With the increasingly severe plastic pollution, the environmental behavior and effects of nanoplastics (NPs) have attracted much attention. The transformation of NPs in natural and engineered environments (e.g., photooxidation, disinfection) can significantly alter the physicochemical properties and thus affect the fate and toxicity of NPs. However, how solar irradiation with free chlorine, an inevitable process once NPs enter the environment from wastewater treatment plants, affects the physicochemical properties of NPs is still unclear. In this study, the behavior and mechanism of polystyrene (PS) NPs transformation in the solar/chlorine process were evaluated. The results demonstrated that solar irradiation significantly enhanced the physicochemical transformation of PS NPs during chlorination, including chain scission, surface oxidation, and organic release. In addition, two-dimensional correlation spectroscopy analysis using Fourier transform infrared spectroscopy and reactive species quenching experiments showed that chain scission and surface oxidation of PS NPs were primarily caused by direct oxidation of hydroxyl radicals and ozone, while reactive chlorine species played an indirect role. Moreover, photochlorination-induced changes in the properties of PS NPs enhanced the colloidal stability in synthetic wastewater solution and toxicity to Caenorhabditis elegans. These findings reveal an important transformation behavior of nanoplastics in the environment and emphasize the importance of accounting for photochlorination to accurately assess the ecological risk of nanoplastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120367 | DOI Listing |
Cancer Cell Int
December 2024
Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Medicine, McMaster University, Hamilton, ON, Canada.
Background: To compare the effectiveness of four surveillance strategies for detecting SARS-CoV-2 within the homeless shelter population in Hamilton, ON and assess participant adherence over time for each surveillance method.
Methods: This was an open-label, cluster-randomized controlled trial conducted in eleven homeless shelters in Hamilton, Ontario, from April 2020 to January 2021. All participants who consented to the study and participated in the surveillance were eligible for testing by self-swabbing.
Trends Biotechnol
December 2024
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA. Electronic address:
Immune system functions play crucial roles in both health and disease, and these functions are regulated by their metabolic programming. The field of immune engineering has emerged to develop therapeutic strategies, including polymeric nanoparticles (NPs), that can direct immune cell phenotype and function by directing immunometabolic changes. Precise control of bioenergetic processes may offer the opportunity to prevent undesired immune activity and improve disease-specific outcomes.
View Article and Find Full Text PDFNanoImpact
December 2024
Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:
Considering the increase in demand for rare earth elements (REEs) and their accumulation in soil ecosystems, it is crucial to understand their toxicity. However, the impact of lanthanum, yttrium and cerium oxides (LaO, YO and CeO, respectively) on soil organisms remains insufficiently studied. This study aims to unravel the effects of LaO, YO and CeO nanoparticles (NPs) and their corresponding bulk forms (0, 156, 313, 625, 1250 and 2500 mg/kg) on the terrestrial species Enchytraeus crypticus.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
This study investigates the use of acrylamide and Alyssum campestre seed gum (ACSG) to create hydrogel composites with enhanced electrical and mechanical properties by incorporating titanium carbide (TiC). The composites were analyzed through techniques such as FTIR, SEM, TEM, TGA, swelling, rheology, tensile, electrical conductivity, antibacterial, and MTT assays. XRD analysis showed that 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!