Owing to accelerated urbanisation, increased pollutants have degraded urban water quality. Timely identification and control of pollution sources enable relevant departments to effectively perform water treatment and restoration. To achieve this goal, a remote sensing identification method for urban water pollution sources applicable to unmanned aerial vehicle (UAV) hyperspectral images was established. First, seven fluorescent components were obtained through three-dimensional excitation-emission matrix fluorescence spectroscopy of dissolved organic matter (DOM) combined with parallel factor analysis. Based on the hierarchical cluster analysis of the seven fluorescence components and three spectral indices, four pollution source (PS) types were determined, namely, domestic sewage, terrestrial input, agricultural and algal, and industrial wastewater sources. Second, several water colour and optical parameters, including the absorption coefficient of chromophoric DOM at 254 nm, humification index, chlorophyll-a concentration, and hue angle, were utilised to develop an identification method with a recognition accuracy exceeding 70% for the four PSs that is suitable for UAV hyperspectral data. This study demonstrated the potential of identifying PSs by combining the fluorescence characteristics of DOM with the optical properties of water, thus expanding the application of remote sensing technologies and providing more comprehensive and reliable information for urban water quality management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132080DOI Listing

Publication Analysis

Top Keywords

urban water
16
remote sensing
12
sensing identification
8
water pollution
8
pollution source
8
source types
8
hyperspectral data
8
water quality
8
pollution sources
8
identification method
8

Similar Publications

Ecological ditches serve as one of the important measures for the concentrated infiltration of stormwater in the construction process of sponge cities. Prolonged concentrated infiltration of stormwater can lead to the accumulation of pollutants and pollution risks in the substrate of ecological ditches. In this study, two different substrate ecological ditches were constructed, namely, a combined substrate ecological ditch with zeolite + ceramsite (EA), and a biological substrate ecological ditch (EB).

View Article and Find Full Text PDF

Constructing fecal-derived electrocatalysts for CO upcycling: simultaneously tackling waste and carbon emissions.

Nanoscale

January 2025

School of Chemistry and Chemical Engineering, School of the Environment, State Key Laboratory of Pollution Control & Resource Reuse, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

The escalating global fecal waste and rising CO levels present dual significant environmental challenges, further intensified by urbanization. Traditional fecal waste management methods are insufficient, particularly in addressing the related health risks and environmental threats. This study explores the synthesis of biochar from pig manure as a carbon substrate to disperse and stabilize Cu nanoparticles, resulting in the formation of an efficient Cu-NB-2000 electrocatalyst for electrocatalytic CO reduction (ECR).

View Article and Find Full Text PDF

Development of Triphenylamine Derived Photosensitizers for Efficient Hydrogen Evolution from Water.

Chemistry

January 2025

The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong (P.R. China), 000000, Hong Kong, HONG KONG.

A series of new (donor)₂-donor-π-acceptor (D2-D-π-A) and (acceptor)₂-donor-π-acceptor (A2-D-π-A) organic photosensitizers based on the framework of (Z)-2-cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylic acid have been synthesized and characterized. By incorporating groups with different electron-donating or withdrawing abilities, such as dibenzothiophene (DBT), dibenzofuran (DBF), and triazine (TA), into the triphenylamine segment, their photophysical properties have been regulated.  Theoretical calculations were used to explore how various donor-acceptor combinations influence their hydrogen production performance.

View Article and Find Full Text PDF

Spectral analysis is a widely used method for monitoring photosynthetic capacity. However, vegetation indices-based linear regression exhibits insufficient utilization of spectral information, while full spectra-based traditional machine learning has limited representational capacity (partial least squares regression) or uninterpretable (convolution). In this study, we proposed a deep learning model with enhanced interpretability based on attention and vegetation indices calculation for global spectral feature mining to accurately estimate photosynthetic capacity.

View Article and Find Full Text PDF

Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!