Short-term treatment with risperidone ameliorated 1,2-diacetylbenzene-induced liver dysfunction.

Int Immunopharmacol

Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea. Electronic address:

Published: October 2023

1,2-Diacetylbenze (CHO, DAB) is a potential inducer or activator of toxic mechanisms. DAB exerts high absorption by the gastrointestinal tract and high blood-brain barrier penetration. However, only the effects of DAB on the central nervous system were reported, with a dearth of evidence of DAB's effects on the liver, which is more susceptible to toxic substances. Risperidone, an atypical antipsychotic drug, has been shown to protect against DAB-induced cognitive impairment in an animal model. Risperidone was found to have little or no effect on the liver after short-term administration. The question of whether risperidone can protect against DAB-induced liver dysfunction, particularly after short-term administration, is unknown. Thus, this study aimed to assess the hepatoprotective effects of risperidone on DAB-induced liver dysfunction in male C57BL/6 mice treated with DAB 5 mg/kg for 1 week and risperidone 0.125-0.25 mg/kg for 2 weeks. After exposure to DAB 5 mg/kg for 1 week, we found that DAB induced liver damage by increasing liver function biomarkers (GGT, ALT, and AST), reactive oxygen species, nitric oxide, and proinflammatory cytokines (IL-1α, IL-1β, IL-6, IL-12, and TNF- α), activating apoptosis (elevated Caspase-3 and Bax levels and reduced Bcl2 level), TLR4/JNK/NF-κB, Jak2/Stat5 pathways, and suppressing Jak2/Stat3 and IRS1/PI3K/AKT/MDM2 pathways. After a 2-week course of treatment, risperidone was able to lessen these effects; the higher dose (0.25 mg/kg) appeared to be more effective than the lower dose (0.125 mg/kg). To strengthen findings from in vivo analysis, in silico analysis also found three targets (Stat3, Caspase-3, AKT, IL-1β), two miRNAs (miR-26b-5p and miR-34a-5p), two transcription factors (NFKB1 and NFKB2), and numerous pathways ("AGE-RAGE signaling pathway in diabetic complications", "hepatitis B", "alcoholic liver disease", "apoptosis", and "liver cirrhosis") as the key molecular processes involved in the pathogenesis of DAB-induced liver damage and targeted by risperidone. The physicochemical characteristics and pharmacokinetics of DAB and risperidone also support the toxic effects of DAB and the beneficial properties of risperidone in the liver. In conclusion, these findings reflect the therapeutic effects of risperidone on DAB-induced liver dysfunction after 1 week and 2 weeks exposure to DAB and risperidone, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110687DOI Listing

Publication Analysis

Top Keywords

liver dysfunction
16
dab-induced liver
16
risperidone
12
liver
11
dab
9
treatment risperidone
8
effects dab
8
protect dab-induced
8
risperidone liver
8
short-term administration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!