ETS1, an important member of the ETS transcription factor family, is involved in a variety of physiological processes in living organisms, such as cell development, differentiation, proliferation and apoptosis, and is thought to be associated with embryonic development and reproduction. However, the polymorphism of ETS1 has been rarely studied, and its potential impact on the formation of reproductive traits in sheep remains unclear. Here, we first analyzed polymorphisms of ETS1 in a population of 382 small-tailed Han sheep with a lambing number record using the Kompetitive Allele Specific PCR (KASP) technique. The results showed the presence of a SNP locus rs161611767 (T > C) in the 3'UTR of ETS1. The association analysis showed the lambing number of first, second and third parity in the individuals with the CC genotype (2.51 ± 0.108, 2.51 ± 0.179, 1.27 ± 0.196) was higher than that of individuals with the TT genotype (1.79 ± 0.086, 1.56 ± 0.102, 0.56 ± 0.100) (P < 0.05). Then, molecular biotechnologies were used to investigate the effects of the EST1 rs161611767 mutant locus on host gene expression in sheep and the underlying mechanism of its effect on sheep reproduction. The RT‒qPCR results showed that the expression of ETS1 was higher in individuals with the CC genotype than in those with the TT genotype (P < 0.05). The dual luciferase reporter assay showed that the luciferase activity of ETS1 in sheep with the TT genotype was decreased compared to CC genotype (P < 0.05), confirming the existence of EST1 rs161611767 in the 3'UTR as a functional SNP. Given that the 3'UTR is an important regulatory region of gene transcription and translation, we performed bioinformatics prediction and confirmed that the SNP rs161611767 of ETS1 was a direct functional target of miR-216a-3p using dual luciferase activity assay, and the binding capacity of allele T was stronger than that of allele C. Subsequently, the cell transfection results showed that miR-216a-3p suppressed the endogenous expression of ETS1 in sheep primary granulosa cells (GCs). Finally, CCK-8, EdU, WB detection of marker proteins and flow cytometry were used to detect the effects of miR-216a-3p on GCs viability and proliferation/apoptosis, respectively. The results showed that miR-216a-3p inhibited the proliferation of GCs while promoting apoptosis of GCs. In conclusion, these results demonstrate that the SNP rs161611767 of ETS1 is associated with lambing number in small-tailed Han sheep, and miR-216a-3p can act as a regulatory element binding to the T mutation in rs161611767 to regulate ETS1 expression and affect GCs development, which may indirectly affect the number of lambs in sheep. These studies provide evidence for the involvement of ETS1 polymorphisms in sheep reproduction and are expected to provide new insights to elucidate the molecular genetic mechanisms of lambing traits in sheep.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2023.07.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!