European eel (Anguilla anguilla) is a commercially important species for fisheries and aquaculture in Europe and the attempt to close the lifecycle in captivity is still at pioneering stage. The first feeding stage of this species is characterized by a critical period between 20 to 24 days post hatch (dph), which is associated with mortalities, indicating the point of no return. We hypothesized that this critical period might also be associated with larvae-bacterial interactions and the larval immune status. To test this, bacterial community composition and expression of immune and stress-related genes of hatchery-produced larvae were explored from the end of endogenous feeding (9 dph) until 28 dph, in response to three experimental first-feeding diets (Diet 1, Diet 2 and Diet 3). Changes in the water bacterial community composition were also followed. Results revealed that the larval stress/repair mechanism was activated during this critical period, marked by an upregulated expression of the hsp90 gene, independent of the diet fed. At the same time, a shift towards a potentially detrimental larval bacterial community was observed in all dietary groups. Here, a significant reduction in evenness of the larval bacterial community was observed, and several amplicon sequence variants belonging to potentially harmful bacterial genera were more abundant. This indicates that detrimental larvae-bacteria interactions were likely involved in the mortality observed. Beyond the critical period, the highest survival was registered for larvae fed Diet 3. Interestingly, genes encoding for pathogen recognition receptor TLR18 and complement component C1QC were upregulated in this group, potentially indicating a higher immunocompetency that facilitated a more successful handling of the harmful bacteria that dominated the bacterial community of larvae on 22 dph, ultimately leading to better survival, compared to the other two groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373994PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288734PLOS

Publication Analysis

Top Keywords

bacterial community
24
critical period
16
community composition
12
european eel
8
anguilla anguilla
8
first-feeding diets
8
diet diet
8
larval bacterial
8
community observed
8
community
6

Similar Publications

Environmental microbial reservoir influences the bacterial communities associated with Hydra oligactis.

Sci Rep

December 2024

MTA-DE "Momentum" Ecology, Evolution & Developmental Biology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.

The objective to study the influence of microbiome on host fitness is frequently constrained by spatial and temporal variability of microbial communities. In particular, the environment serves as a dynamic reservoir of microbes that provides potential colonizers for animal microbiomes. In this study, we analyzed the microbiome of Hydra oligactis and corresponding water samples from 15 Hungarian lakes to reveal the contribution of environmental microbiota on host microbiome.

View Article and Find Full Text PDF

The ApxIVA protein belongs to a distinct class of a "clip and link" activity of Repeat-in-ToXin (RTX) exoproteins. Along with the three other pore-forming RTX toxins (ApxI, ApxII and ApxIII), ApxIVA serves as a major virulence factor of Actinobacillus pleuropneumoniae, the causative agent of porcine pneumonia. The gene encoding ApxIVA is located on a bicistronic operon downstream of the orf1 gene and is expressed exclusively under in vivo conditions.

View Article and Find Full Text PDF

Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia.

J Hazard Mater

December 2024

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. Electronic address:

Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.

View Article and Find Full Text PDF

Active phytoextraction of toluene shifts the microbiome and enhances degradation capacity in hybrid poplar.

J Environ Manage

December 2024

School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON, N1H 2W1, Canada. Electronic address:

Hybrid poplars are widely recognized for their effectiveness in remediating subsurface aromatic hydrocarbon contaminants, including benzene, toluene, ethylbenzene, and xylene isomers (BTEX). While BTEX compounds are frequently found in the transpiration streams of poplars at contaminated sites, the microbial dynamics within these trees, particularly in response to hydrocarbon exposure, remain underexplored. This study utilized high-throughput amplicon sequencing to investigate the trunk microbiome in hybrid poplars at a field-scale toluene phytoremediation site.

View Article and Find Full Text PDF

The study explores the structural and functional dynamics of rhizospheric bacterial diversity in the Pranmati basin, focusing on their ecological significance, diversity, and functional roles across dominant vegetation types; Rhododendron arboreum, Myrica esculenta, and Quercus leucotrichophora. The research provides critical insights into soil health and ecosystem functioning by analysing rhizospheric soil properties among the selected vegetations. The research findings reveal that Myrica esculenta exhibits the highest root colonization (95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!