Surgical action triplet recognition plays a significant role in helping surgeons facilitate scene analysis and decision-making in computer-assisted surgeries. Compared to traditional context-aware tasks such as phase recognition, surgical action triplets, comprising the instrument, verb, and target, can offer more comprehensive and detailed information. However, current triplet recognition methods fall short in distinguishing the fine-grained subclasses and disregard temporal correlation in action triplets. In this article, we propose a multi-task fine-grained spatial-temporal framework for surgical action triplet recognition named MT-FiST. The proposed method utilizes a multi-label mutual channel loss, which consists of diversity and discriminative components. This loss function decouples global task features into class-aligned features, enabling the learning of more local details from the surgical scene. The proposed framework utilizes partial shared-parameters LSTM units to capture temporal correlations between adjacent frames. We conducted experiments on the CholecT50 dataset proposed in the MICCAI 2021 Surgical Action Triplet Recognition Challenge. Our framework is evaluated on the private test set of the challenge to ensure fair comparisons. Our model apparently outperformed state-of-the-art models in instrument, verb, target, and action triplet recognition tasks, with mAPs of 82.1% (+4.6%), 51.5% (+4.0%), 45.50% (+7.8%), and 35.8% (+3.1%), respectively. The proposed MT-FiST boosts the recognition of surgical action triplets in a context-aware surgical assistant system, further solving multi-task recognition by effective temporal aggregation and fine-grained features.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3299321DOI Listing

Publication Analysis

Top Keywords

surgical action
24
triplet recognition
24
action triplet
20
recognition surgical
12
action triplets
12
recognition
9
multi-task fine-grained
8
fine-grained spatial-temporal
8
spatial-temporal framework
8
surgical
8

Similar Publications

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Importance: An increasing number of older adults are undergoing surgery. Older adults face significant challenges throughout the spectrum of perioperative care. No frameworks exist to support primary care clinicians in helping older adults navigate perioperative care beyond preoperative medical clearance.

View Article and Find Full Text PDF

Emerging Deep Brain Stimulation Targets in the Cerebellum for Tremor.

Cerebellum

January 2025

Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Deep brain stimulation (DBS) for essential tremor is remarkably effective, leading to over 80% reduction in standardized tremor ratings. However, for certain types of tremor, such as those accompanied by ataxia or dystonia, conventional DBS targets have shown poor efficacy. Various rationales for using cerebellar DBS stimulation to treat tremor have been advanced, but the varied approaches leave many questions unanswered: which anatomic target, stimulation settings, and indications seem most promising for this emerging approach.

View Article and Find Full Text PDF

Anesthetics are crucial in surgical procedures and therapeutic interventions, but they come with side effects and varying levels of effectiveness, calling for novel anesthetic agents that offer more precise and controllable effects. Targeting Gamma-aminobutyric acid (GABA) receptors, the primary inhibitory receptors in the central nervous system, could enhance their inhibitory action, potentially reducing side effects while improving the potency of anesthetics. In this study, we introduce a proteomic learning of GABA receptor-mediated anesthesia based on 24 GABA receptor subtypes by considering over 4000 proteins in protein-protein interaction (PPI) networks and over 1.

View Article and Find Full Text PDF

Background: This project aimed to develop an evidence-based nursing care bundle after gastrostomy feeding tube insertion and implement it into clinical practice using the Knowledge to Action (KTA) framework.

Methods: This mixed-method design project was conducted in a university hospital between December 2021 and June 2022. The project was carried out in four phases: (1) development of an evidence-based care bundle, (2) education for care bundle training, (3) implementation of the care bundle, (4) evaluation of the care bundle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!