A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors. | LitMetric

Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors.

ACS Nano

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.

Published: August 2023

Optimizing the synergy between nanoporous carbons and ionic liquids can significantly enhance the energy density of supercapacitors. The highest energy density has been obtained as the size of porous carbon matches the size of ionic liquids, while it may result in slower charging dynamics and thus reduce the power density. Enhancing energy storage without retarding charging dynamics remains challenging. Herein, we designed porous electrodes by introducing an optimized horn-like entrance to the nanopore, which can concurrently improve supercapacitors' charging dynamics and energy storage. Our results revealed the mechanism of improved charging lies in the gradual desolvation process and optimized ion motion paths: the former expedites the adsorption of the counterion by reducing the transitional energy barrier for ions entering the pores, and the latter accelerates the co-ion desorption and eliminates ion overfilling. Meanwhile, the enhancement of energy density could be attributed to the multi-ion coordinated migration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c03886DOI Listing

Publication Analysis

Top Keywords

charging dynamics
16
energy density
12
ionic liquids
8
energy storage
8
energy
6
charging
5
horn-like pore
4
pore entrance
4
entrance boosts
4
boosts charging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!