Thermal excitation alters the spectroscopic signatures of solvated ions and affects their interactions with neighboring molecules. By analyzing the photoelectron spectra of microhydrated phenide (Ph), the temperatures of the Ph·HO and Ph·(HO) clusters from a hot ion source were determined to be 560 and 520 K, respectively, vs 700 K for unsolvated Ph. Compared to theory predictions for cold clusters, the high temperature of the environment significantly reduces the average hydration stabilization of the ions and the corresponding band shifts in their spectra. The results are discussed in terms of a statistical model that describes the energy content of the intermolecular (IM) degrees of freedom of the cluster, ⟨⟩. We show that over the entire solvation energy range, the density of states associated with the IM modes of Ph·HO, of which there are only 6, is more than an order of magnitude greater than that associated with the 27 internal vibrations of the core anion. The results suggest that the observed cluster temperatures are not determined by the ion source but represent the intrinsic properties of the clusters. The energetics and statistical mechanics of microsolvation limit the excitation that the IM degrees of freedom can sustain without significant solvent evaporation on the timescale of the experiment. The limit is expressed as a characteristic solvation temperature (CST), which is the maximum canonical temperature of a stable cluster ensemble. Driven by evaporative cooling, the terminal cluster temperature from a hot ion source will always be close to the cluster's CST. Only if the source temperature is lower than CST will the observed cluster temperature be determined by the source conditions. An approximate rule is proposed for estimating the characteristic temperature of any cluster using the inflection point on the ⟨⟩ vs curve.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.3c02737 | DOI Listing |
Biol Res
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:
The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong. Electronic address:
The oceanic dissolved organic matter (DOM) reservoir is one of Earth's largest carbon pools, yet the factors contributing to its recalcitrance and persistence remain poorly understood. Here, we employed ultra-high resolution mass spectrometry (UHRMS) to examine the molecular dynamics of DOM from terrestrial, marine and mixed sources during bio-incubation over weekly, monthly, and one year time spans. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we classified DOM into three distinct categories (Consumed, Resistant and Product) based on their presence or absence at the start and end of the incubation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Council for Geoscience, Private Bag X112, Pretoria, 0001, South Africa.
One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.
View Article and Find Full Text PDFNutrients
January 2025
Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca 3460000, Chile.
Unlabelled: Dental caries remains a prevalent chronic disease driven by dysbiosis in the oral biofilm, with playing a central role in its pathogenesis.
Objective: This study aimed to assess the effect of D-tagatose on cariogenic risk by analyzing randomized clinical trials (RCTs).
Methods: A systematic literature review was conducted targeting RCTs published up to 2024 in eight databases and two gray literature sources.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!