Formic Acid as a Dopant for Atmospheric Pressure Chemical Ionization for Negative Polarity of Ion Mobility Spectrometry and Mass Spectrometry.

J Am Soc Mass Spectrom

Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia.

Published: September 2023

Formic acid (FA) is introduced as a potent dopant for atmospheric pressure chemical ionization (APCI) for ion mobility spectrometry (IMS) and mass spectrometry (MS). The mechanism of chemical ionization with the FA dopant was studied in the negative polarity using a corona discharge (CD)-IMS-MS technique in air. Standard reactant ions of the negative polarity present in air are O·(CO)·(HO) (m = 0, 1 and n = 1, 2) clusters. Introduction of the FA dopant resulted in the production of HCOO·FA reactant ions. The effect of the FA dopant on the APCI of different classes of compounds was investigated, including plant hormones, pesticides, acidic drugs, and explosives. FA dopant APCI resulted in deprotonation and/or adduct ion formation, [M - H] and [M + HCOO], respectively. Supporting density functional theory (DFT) calculations showed that the ionization mechanism depended on the gas-phase acidity of the compounds. FA dopant APCI led to the improvement of detection sensitivity, suppression of fragmentation, and changes in the ion mobilities of the analyte ions for analytes with suitable molecular structures and gas acidity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.3c00225DOI Listing

Publication Analysis

Top Keywords

chemical ionization
12
negative polarity
12
dopant apci
12
formic acid
8
dopant atmospheric
8
atmospheric pressure
8
pressure chemical
8
ion mobility
8
mobility spectrometry
8
mass spectrometry
8

Similar Publications

Nitrosamine impurities, particularly nitrosamine drug substance-related impurities (NDSRIs), pose significant health risks due to their potential mutagenicity and carcinogenicity. Consequently, stringent regulatory guidelines have been established for their detection and quantification in pharmaceutical products. This study presents a simple, robust, and ultrasensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify the -nitroso-dabigatran etexilate (NDE) impurity in the drugs and capsules of dabigatran etexilate (DEM) using an electrospray ionization technique.

View Article and Find Full Text PDF

In situ quantification of fungicide residue on wheat leaf surfaces using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging technology.

Food Chem X

January 2025

State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.

To overcome the time-consuming off-site limitations in conventional pesticide detection, this contribution presents an in situ quantitative analysis detection strategy for pesticides on leaf surfaces using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging technology. Taking fungicide metrafenone as a representative, we initially screened seven commonly used matrices, and identifying α-cyano-4-hydroxycinnamic acid as the most effective one in positive mode. Subsequently, coating the matrix using sublimation spraying method resulted in the highest mass intensity.

View Article and Find Full Text PDF

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.

Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.

View Article and Find Full Text PDF

Transformation of Distinct Superatoms to Superalkalis by Successive Ligation of Thymine Nucleobases.

J Phys Chem A

January 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China.

The ligation strategy has been widely used in the chemical synthesis of atomically precise clusters. A series of thymine (T)-ligated Al-T ( = Be, Al, C; = 1-5) complexes have been studied to reveal the effect of DNA nucleobase ligands on the electronic structures of different superatoms in the present work. In addition to its protective role, the successive attachment of thymine ligands significantly lowers the adiabatic ionization energies (AIEs) of the studied Al superatoms with filled and unfilled electronic shells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!