Loganin alleviates myocardial ischemia-reperfusion injury through GLP-1R/NLRP3-mediated pyroptosis pathway.

Environ Toxicol

Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China.

Published: November 2023

Myocardial ischemia-reperfusion (I/R) injury is one of main pathological manifestations of cardiovascular outcomes related to NLRP3 inflammasome-mediated pyroptosis pathway. Loganin is an iridoid glycoside extracted from traditional Chinese medicines, which has multiple activities. However, the roles and mechanism of loganin in myocardial I/R injury remain largely unknown. The models of myocardial I/R injury were established using I/R-treated rats or OGD/R-treated H9C2 cardiomyocytes. Myocardial damage was assessed by TTC and hematoxylin-eosin staining. Pyroptosis-related marker levels were detected by immunohistochemistry, immunofluorescence and western blotting assays. Cell proliferation was examined via EdU assay. Cell apoptosis was investigated by LDH release and flow cytometry. The integrity of cell membrane was analyzed via Dil staining. GLP-1R and NLRP3 levels were detected by immunofluorescence and western blotting assays. Our results showed that loganin suppressed I/R-induced myocardial damage in rats by reducing myocardial infarct, injury and pyroptosis. In addition, loganin attenuated OGD/R-induced cardiomyocyte apoptosis through increasing cell proliferation and reducing LDH release and apoptotic rate. Loganin also mitigated OGD/R-induced cardiomyocyte pyroptosis by reducing cell membrane damage and levels of cleaved caspase-1, IL-1β and IL-18. Furthermore, loganin repressed GLP-1R/NLRP3 pathway activation in OGD/R-treated H9C2 cardiomyocytes by enhancing GLP-1R expression and decreasing NLRP3 level. GLP-1R/NLRP3 activation by GLP-1R inhibition or NLRP3 overexpression reversed the suppressive effects of loganin on OGD/R-induced cardiomyocyte pyroptosis. These data indicated that loganin prevented OGD/R-induced proliferation inhibition, apoptosis and pyroptosis in OGD/R-treated cardiomyocytes by inhibiting GLP-1R/NLRP3 activity, indicating the therapeutic potential of loganin in myocardial I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23908DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
myocardial i/r
12
ogd/r-induced cardiomyocyte
12
loganin
10
myocardial
8
myocardial ischemia-reperfusion
8
pyroptosis pathway
8
loganin myocardial
8
ogd/r-treated h9c2
8
h9c2 cardiomyocytes
8

Similar Publications

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

5-(3-(-(Carboxymethyl)naphthalene-2-sulfonamido)phenyl)-1-ethyl-1-pyrrole-2-carboxylic acid as a Keap1-Nrf2 inhibitor for cerebral ischemia/reperfusion injury treatment.

RSC Adv

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China

The Keap1 (Kelch-like ECH-Associating Protein 1)-Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2)-ARE (Antioxidant Response Element) signaling pathway plays a crucial role in the oxidative stress response and has been linked to the development and progression of various diseases. Its influence on cerebral ischemia/reperfusion (I/R) injury has garnered significant attention. In our study, we investigated the effect of compound 2, a non-covalent inhibitor of the Keap1-Nrf2 interaction, which was previously discovered by our research group.

View Article and Find Full Text PDF

Background: Hepatic ischemia/reperfusion (I/R) injury (HIRI) is an intrinsic phenomenon observed in the process of various liver surgeries. Unfortunately, there are currently few options available to prevent HIRI. Accordingly, we aim to explore the role and key downstream effects of B-cell lymphoma 6 (BCL6) in hepatic I/R (HIR).

View Article and Find Full Text PDF

As several decades of research have shown the cardioprotective effects of angiotensin-converting enzyme (ACE) inhibitors alone or in combination with diuretics, we were interested in investigating the effects of subchronic therapy of these drugs on ischemia-reperfusion (I/R) damage to the heart, as well as their influence on oxidative status. The research was conducted on 40 spontaneously hypertensive male Wistar Kyoto rats, divided into 4 groups. Animals were treated for four weeks with 10 mg/kg/day zofenopril alone or in combination with hydrochlorothiazide, indapamide and spironolactone per os.

View Article and Find Full Text PDF

Sufentanil attenuates renal ischemia-reperfusion injury via the lncRNA KCNQ1OT1/miR-211-5p/HMGB1 axis.

Pathol Res Pract

December 2024

Department of Anesthesiology, Nantong Haimen People's Hospital, Nantong 226100, China. Electronic address:

Inflammation is one of the most significant pathological changes in ischemia-reperfusion injury (IRI). Sufentanil has protective effects on IRI by reducing inflammatory responses. This study aimed to investigate the protective effects and possible mechanisms of sufentanil on renal IRI (RIRI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!