AI Article Synopsis

  • Bone development occurs primarily through two processes: intramembranous ossification (bone forming within soft tissue) and endochondral ossification (bone forming via a cartilage model).
  • Recent research highlights the intricate relationship between cranial cartilages and dermal bone formation, suggesting that both processes may interact more closely than previously thought.
  • Using advanced mouse models, researchers are mapping the origins of cranial cartilage cells, confirming boundaries between different cell types, and tracking the differentiation of osteoblasts to enhance understanding of cranial bone formation.

Article Abstract

Most bone develops either by intramembranous ossification where bone forms within a soft connective tissue, or by endochondral ossification by way of a cartilage anlagen or model. Bones of the skull can form endochondrally or intramembranously or represent a combination of the two types of ossification. Contrary to the classical definition of intramembranous ossification, we have previously described a tight temporo-spatial relationship between cranial cartilages and dermal bone formation and proposed a mechanistic relationship between chondrocranial cartilage and dermal bone. Here, we further investigate this relationship through an analysis of how cells organize to form cranial cartilages and dermal bone. Using Wnt1-Cre2 and Mesp1-Cre transgenic mice, we determine the derivation of cells that comprise cranial cartilages from either cranial neural crest (CNC) or paraxial mesoderm (PM). We confirm a previously determined CNC-PM boundary that runs through the hypophyseal fenestra in the cartilaginous braincase floor and identify four additional CNC-PM boundaries in the chondrocranial lateral wall, including a boundary that runs along the basal and apical ends of the hypochiasmatic cartilage. Based on the knowledge that as osteoblasts differentiate from CNC- and PM-derived mesenchyme, the differentiating cells express the transcription factor genes RUNX2 and osterix (OSX), we created a new transgenic mouse line called R2Tom. R2Tom mice carry a tdTomato reporter gene joined with an evolutionarily well-conserved enhancer sequence of RUNX2. R2Tom mice crossed with Osx-GFP mice yield R2Tom;Osx-GFP double transgenic mice in which various stages of osteoblasts and their precursors are detected with different fluorescent reporters. We use the R2Tom;Osx-GFP mice, new data on the cell derivation of cranial cartilages, histology, immunohistochemistry, and detailed morphological observations combined with data from other investigators to summarize the differentiation of cranial mesenchyme as it forms condensations that become chondrocranial cartilages and associated dermal bones of the lateral cranial wall. These data advance our previous findings of a tendency of cranial cartilage and dermal bone development to vary jointly in a coordinated manner, promoting a role for cranial cartilages in intramembranous bone formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818014PMC
http://dx.doi.org/10.1002/ar.25295DOI Listing

Publication Analysis

Top Keywords

cranial cartilages
20
dermal bone
16
cranial
9
intramembranous ossification
8
cartilages dermal
8
bone formation
8
cartilage dermal
8
transgenic mice
8
boundary runs
8
r2tom mice
8

Similar Publications

A review of ectochondral bone and the role of membranes in shaping endochondral bones of the skull.

Anat Rec (Hoboken)

January 2025

Department of Health and Rehabilitation Sciences, Slippery Rock University, Slippery Rock, Pennsylvania, USA.

Bones of the skull are traditionally categorized as derived from either endochondral or intramembranous bone. In our previous work, we have observed the interaction of different tissue types in growth of the skull. We find the dichotomy of intramembranous and endochondral bone to be too restrictive, limiting our interpretation of sources of biological variation.

View Article and Find Full Text PDF

Despite being a major target of reconstructive surgery, development of the ear pinna remains poorly studied. Here we provide a cellular characterization of late gestational and postnatal ear pinna development in two rodents and investigate the role of BMP5 in expansion and differentiation of auricular elastic cartilage. We find that ear pinna development is largely conserved between Mus musculus and the highly regenerative Acomys dimidiatus.

View Article and Find Full Text PDF

To explore the surgical methods and treatment outcomes of nasal endoscopic surgery for nasal deformity secondary to unilateral cleft lip and palate, combined with nasal septal deviation, using nasal septal cartilage and bone. Eleven patients who underwent surgical treatment for unilateral cleft lip and palate secondary to nasal deformity in the Department of Otorhinolaryngology, Head and Neck Surgery, Linyi People's Hospital, Shandong Second Medical University, from March 2021 to March 2023, were retrospectively analyzed. The cohort included 8 males and 3 females, aged (22.

View Article and Find Full Text PDF

Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease that causes chronic pain and joint dysfunction. However, the current understanding of TMJOA pathogenesis is limited and necessitates further research. Animal models are crucial for investigating TMJOA due to the scarcity of clinical samples.

View Article and Find Full Text PDF

FGFR2 directs inhibition of WNT signaling to regulate anterior fontanelle closure during skull development.

Development

January 2025

Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.

The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, and Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study, we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!