Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Narcissism is a multifaceted construct often linked to pathological conditions whose neural correlates are still poorly understood. Previous studies have reported inconsistent findings related to the neural underpinnings of narcissism, probably due to methodological limitations such as the low number of participants or the use of mass univariate methods. The present study aimed to overcome the previous methodological limitations and to build a predictive model of narcissistic traits based on neural and psychological features. In this respect, two machine learning-based methods (Kernel Ridge Regression and Support Vector Regression) were used to predict narcissistic traits from brain structural organization and from other relevant normal and abnormal personality features. Results showed that a circuit including the lateral and middle frontal gyri, the angular gyrus, Rolandic operculum, and Heschl's gyrus successfully predicted narcissistic personality traits ( < 0.003). Moreover, narcissistic traits were predicted by normal (openness, agreeableness, conscientiousness) and abnormal (borderline, antisocial, insecure, addicted, negativistic, machiavellianism) personality traits. This study is the first to predict narcissistic personality traits via a supervised machine learning approach. As such, these results may expand the possibility of deriving personality traits from neural and psychological features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17470919.2023.2242094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!