Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The diffusion and reorganization of phospholipids and membrane-associated proteins are fundamental for cellular function. Fluorescence cross-correlation spectroscopy (FCCS) measures diffusion and molecular interactions at nanomolar concentration in biological systems. We have developed an economical method to simultaneously monitor diffusion and complexation with the use of super-continuum laser and spectral deconvolution from a single detector. Customizable excitation wavelengths were chosen from the wide-band source and spectral fitting of the emitted light revealed the interactions for up to four chromatically overlapping fluorophores simultaneously. This method was applied to perform four-color FCCS that we demonstrated with polystyrene nanoparticles, lipid vesicles, and membrane-bound molecules. Up to four individually customizable excitation channels were selected from the broad-spectrum fiber laser to excite the diffusers within a diffraction-limited spot. The fluorescence emission passed through a cleanup filter and a dispersive prism prior to being collected by a sCMOS or EMCCD camera with up to 1.8 kHz frame rates. The emission intensity versus time of each fluorophore was extracted through a linear least-square fitting of each camera frame and temporally correlated via custom software. Auto- and cross-correlation functions enabled the measurement of the diffusion rates and binding partners. We have measured the induced aggregation of nanobeads and lipid vesicles in solution upon increasing the buffer salinity. Because of the adaptability of investigating four fluorophores simultaneously with a cost-effective method, this technique will have wide application for examining macromolecular complex formation in model and living systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368031 | PMC |
http://dx.doi.org/10.1364/BOE.486937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!