A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Review of recent advances in frequency-domain near-infrared spectroscopy technologies [Invited]. | LitMetric

Review of recent advances in frequency-domain near-infrared spectroscopy technologies [Invited].

Biomed Opt Express

HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK.

Published: July 2023

AI Article Synopsis

  • * Frequency-domain NIRS (FD-NIRS) offers significant advantages over CW-NIRS, including the ability to quantify tissue properties and provide absolute measurements of chromophore concentrations.
  • * The review highlights recent advancements in FD-NIRS technology, discusses its clinical applications, and outlines future directions for developing affordable, portable, and wearable FD-NIRS systems.

Article Abstract

Over the past several decades, near-infrared spectroscopy (NIRS) has become a popular research and clinical tool for non-invasively measuring the oxygenation of biological tissues, with particular emphasis on applications to the human brain. In most cases, NIRS studies are performed using continuous-wave NIRS (CW-NIRS), which can only provide information on relative changes in chromophore concentrations, such as oxygenated and deoxygenated hemoglobin, as well as estimates of tissue oxygen saturation. Another type of NIRS known as frequency-domain NIRS (FD-NIRS) has significant advantages: it can directly measure optical pathlength and thus quantify the scattering and absorption coefficients of sampled tissues and provide direct measurements of absolute chromophore concentrations. This review describes the current status of FD-NIRS technologies, their performance, their advantages, and their limitations as compared to other NIRS methods. Significant landmarks of technological progress include the development of both benchtop and portable/wearable FD-NIRS technologies, sensitive front-end photonic components, and high-frequency phase measurements. Clinical applications of FD-NIRS technologies are discussed to provide context on current applications and needed areas of improvement. The review concludes by providing a roadmap toward the next generation of fully wearable, low-cost FD-NIRS systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368025PMC
http://dx.doi.org/10.1364/BOE.484044DOI Listing

Publication Analysis

Top Keywords

fd-nirs technologies
12
near-infrared spectroscopy
8
chromophore concentrations
8
nirs
6
fd-nirs
5
review advances
4
advances frequency-domain
4
frequency-domain near-infrared
4
technologies
4
spectroscopy technologies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!