In this study, we utilize nanosecond and femtosecond direct laser writing for the generation of hydrophobic and hydrophilic microfluidic valves on a centrifugal microfluidic disk made of polycarbonate, without the need for wet-chemistry. Application of a femtosecond (fs) laser at 800 nm resulted in an increased contact angle, from ∼80° to ∼160°, thereby inducing the formation of a hydrophobic surface. In contrast, employing a nanosecond (ns) laser at 248 nm led to the formation of superhydrophilic surfaces. Morphological studies identified the enhancement in the surface roughness for the hydrophobic surfaces and the creation of smooth patterns for the hydrophilic surfaces. Chemical modifications in the laser-ablated samples were confirmed Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. These spectroscopic examinations revealed an increase of hydrophilic chemical groups on both surfaces, with a more pronounced increase on the nanosecond laser-modified surface. Furthermore, these surfaces were used as a case study for centrifugal microfluidic valves. These modified surfaces demonstrated peculiar pressure responses. Specifically, the hydrophobic valves necessitated a 29% increase in pressure for droplet passage through a microchannel. On the other hand, the superhydrophilic valves exhibited enhanced wettability, decreasing the pressure requirement for fluid flow through the modified area by 39%. However, similarly to the hydrophobic valves, the fluid exiting the hydrophilic valve area required an increased pressure. Overall, our study shows the potential for tailoring valve functionality in microfluidic systems through precise surface modifications using laser technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366570 | PMC |
http://dx.doi.org/10.1039/d3ra01749d | DOI Listing |
Planta
January 2025
Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA.
The starch-statolith theory was established science for a century when the existence of gravitropic, starchless mutants questioned its premise. However, detailed kinetic studies support a statolith-based mechanism for graviperception. Gravitropism is the directed growth of plants in response to gravity, and the starch-statolith hypothesis has had a consensus among scientists as the accepted model for gravity perception.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Integrated Circuits, Peking University, Beijing, 100871, China.
The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.
View Article and Find Full Text PDFJ Dent
January 2025
Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Stomatology, Fengcheng Hospital of Fengxian District, Shanghai, 201418, China. Electronic address:
Objectives: To compare the adaptation of maxillary removable partial denture (RPD) frameworks fabricated through direct digital workflows with that of traditional cast frameworks and indirect digital frameworks.
Methods: The workflow for fabricating the digital cobalt-chromium framework encompassed intraoral scanning (IOS) using Trios 3, computer-aided survey and design, and subsequently either the lost-wax technique from a printed resin framework pattern (Framework B) or direct selective laser melting (SLM) (Framework C). The traditional cast framework (Framework A) was selected as a control.
Ann Vasc Surg
January 2025
Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:
Objectives: To compare the safety and efficacy of debulking devices, including directional atherectomy (DA) and excimer laser atherectomy (ELA), when combined with drug-coated balloons (DCB) for treating de novo femoropopliteal atherosclerotic obliterans (ASO). Additionally, to evaluate the long-term outcomes and application status of these different debulking devices.
Methods: Clinical data were collected from patients with femoropopliteal ASO who underwent combined debulking and DCBs at the Vascular Surgery Department of Xuanwu Hospital, Capital Medical University, China, between January 2018 and January 2023.
Sci Rep
January 2025
Refined Imaging LLC, Baton Rouge, LA, 70810, USA.
This study describes procedures for embedding digital information into additively manufactured components as well as procedures for readout and tensile testing. Embedded digital codes were printed inside ASTM E8/E8M dumbbells using Direct Metal Laser Melting (DMLS) with an EOS M290 printer. The codes were configured as either ellipsoids or prolate spheroids in patterns given by the Cantor dust fractal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!