Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we investigate the flow of electrically conducting hybrid nanofluid , due to rotating disks, along with thermal slip, heat generation, and viscous dissipation. The nonlinear differential system is modelled and transformed into dimensionless partial differential equations using suitable dimensionless variables. To obtain solutions for the considered model, a finite difference toolkit is implemented, and numerical solutions are achieved. Graphical results are presented to display the influences of different dimensionless variables on flow velocity and temperature. This research contributes to a better understanding of hybrid nanofluid flows and can inform the design of cooling systems and other practical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366398 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e18018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!