Breast cancer diagnosis is crucial for timely treatment and improved outcomes. This paper proposes a novel approach for rapid breast cancer diagnosis using optical fiber probe-based attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy from 750 to 4000 cm . The technique enables direct analysis of tissue samples, eliminating the need for microtome sectioning and staining, thus saving time and resources. By capturing molecular fingerprint information, various machine-learning models were used to analyze the spectroscopic data to classify cancerous and non-cancerous tissues accurately. Comparing deparaffinized and paraffinized samples reveals the impact of sample preparation and experimental methods. The study demonstrates a strong correlation between the cancerous nature of a sample and its ATR-FTIR spectrum, suggesting its potential for breast cancer diagnosis (sensitivity of 74.2% and specificity of 78.3%). The proposed approach holds promise for integration into clinical operations, providing a rapid method for preliminary breast cancer diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202300199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!