Microbubble generation and manipulation play critical roles in diverse applications such as microfluidic mixing, pumping, and microrobot propulsion. However, existing methods are typically limited to lateral movements on customized substrates or rely on specific liquids with particular properties or designed concentration gradients, thereby hindering their practical applications. To address this challenge, this paper presents a method that enables robust vertical manipulation of microbubbles. By focusing a resonant laser on hydrophilic silica-coated gold nanoparticle arrays immersed in water, plasmonic microbubbles are generated and detach from the substrates immediately upon cessation of laser irradiation. Using simple laser pulse control, it can achieve an adjustable size and frequency of bubble bouncing, which is governed by the movement of the three-phase contact line during surface wetting. Furthermore, it demonstrates that rising bubbles can be pulled back by laser irradiation induced thermal Marangoni flow, which is verified by particle image velocimetry measurements and numerical simulations. This study provides novel insights into flexible bubble manipulation and integration in microfluidics, with significant implications for various applications including mixing, drug delivery, and the development of soft actuators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202302939 | DOI Listing |
Lab Chip
December 2024
College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
Acoustic waves provide an effective method for object manipulation in microfluidics, often requiring high-frequency ultrasound in the megahertz range when directly handling microsized objects, which can be costly. Micro-air-bubbles in water offer a solution toward low-cost technologies using low-frequency acoustic waves. Owing to their high compressibility and low elastic modulus, these bubbles can exhibit significant expansion and contraction in response to even kilohertz acoustic waves, leading to resonances with frequencies determined and tuned by air-bubble size.
View Article and Find Full Text PDFCell Mol Bioeng
October 2024
Biomedical Engineering Department, Oregon Health and Science University, Portland, OR 97201 USA.
Introduction: Coaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Quasi-3D plasmonic nanostructures are in high demand for their ability to manipulate and enhance light-matter interactions at subwavelength scales, making them promising building blocks for diverse nanophotonic devices. Despite their potential, the integration of these nanostructures with optical sensors and imaging systems on a large scale poses challenges. Here, a robust technique for the rapid, scalable, and seamless replication of quasi-3D plasmonic nanostructures is presented straight from their production wafers using a microbubble process.
View Article and Find Full Text PDFJ Control Release
November 2024
School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Sonoporation-based delivery has great promise for noninvasive drug and gene therapy. After short-term membrane resealing, the long-term function recovery of sonoporated cells affects the efficiency and biosafety of sonoporation-based delivery. It is necessary to identify the key early biological signals that influence cell fate and to develop strategies for manipulating the long-term fates of sonoporated cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany.
Microbubbles (MB) are widely used as contrast agents for ultrasound (US) imaging and US-enhanced drug delivery. Polymeric MB are highly suitable for these applications because of their acoustic responsiveness, high drug loading capability, and ease of surface functionalization. While many studies have focused on using polymeric MB for diagnostic and therapeutic purposes, relatively little attention has thus far been paid to improving their inherent imaging and drug delivery features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!