The speed with which information from vision is transformed into working memory (WM) representations that resist interference from ongoing perception and cognition is the subject of conflicting results. Using distinct paradigms, researchers have arrived at estimates of the consolidation time course ranging from 25 ms to 1 s - a range of more than an order of magnitude. However, comparisons of consolidation duration across very different estimation paradigms rely on the implicit assumption that WM consolidation speed is a stable, structural constraint of the WM system. The extremely large variation in WM consolidation speed estimates across measurement approaches motivated the current work's goal of determining whether consolidation speed truly is a stable structural constraint of WM encoding, or instead might be under strategic control as suggested by some accounts. By manipulating the relative task priority of WM encoding and a subsequent sensorimotor decision in a dual-task paradigm, the current experiments demonstrate that the long duration of WM consolidation does not change as a result of task-specific strategies. These results allow comparison of WM consolidation across estimation approaches, are consistent with recent multi-phase WM consolidation models, and are consistent with consolidation duration being an inflexible structural limit.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13414-023-02757-7DOI Listing

Publication Analysis

Top Keywords

consolidation speed
12
consolidation
9
working memory
8
structural limit
8
consolidation duration
8
speed stable
8
stable structural
8
structural constraint
8
slow rate
4
rate working
4

Similar Publications

Patients with dementia with Lewy bodies display a signature alteration of their cognitive connectome.

Sci Rep

January 2025

Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.

Cognition plays a central role in the diagnosis and characterization of dementia with Lewy bodies (DLB). However, the complex associations among cognitive deficits in different domains in DLB are largely unknown. To characterize these associations, we investigated and compared the cognitive connectome of DLB patients, healthy controls (HC), and Alzheimer's disease patients (AD).

View Article and Find Full Text PDF

How do lesions affect limb lengthening in children with Ollier's disease?

BMC Musculoskelet Disord

January 2025

Department of Pediatric Orthopaedics, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.

Purpose: Ollier's disease (multiple enchondromatosis) can cause severe lower limb length discrepancy and deformity in children. Osteotomy and limb lengthening with external fixation can correct the lower extremity deformity. There may be lesions in the osteotomy part (OP), and the internal fixation part of the external fixation(FP).

View Article and Find Full Text PDF

Neuronal traveling waves form preferred pathways using synaptic plasticity.

J Comput Neurosci

December 2024

Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA.

Traveling waves of neuronal spiking activity are commonly observed across the brain, but their intrinsic function is still a matter of investigation. Experiments suggest that they may be valuable in the consolidation of memory or learning, indicating that consideration of traveling waves in the presence of plasticity might be important. A possible outcome of this consideration is that the synaptic pathways, necessary for the propagation of these waves, will be modified by the waves themselves.

View Article and Find Full Text PDF

A Numerical Study of Topography and Roughness of Sloped Surfaces Using Process Simulation Data for Laser Powder Bed Fusion.

Materials (Basel)

December 2024

Department of Industrial Engineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.

The simulation of additive manufacturing has become a prominent research area in the past decade. Process physics simulations are employed to replicate laser powder bed fusion (L-PBF) manufacturing processes, aiming to predict potential issues through simulated data. This study focuses on calculating surface roughness by utilizing 3D surface topology extracted from simulated data, as surface roughness significantly influences part quality.

View Article and Find Full Text PDF
Article Synopsis
  • Motor imagery (MI) improves motor performance and activates the motor cortex, while EEG-neurofeedback (EEG-NF) allows real-time brain activity self-regulation but its effects on motor performance are unclear.
  • A study with 91 healthy adults compared the effects of MI training, EEG-NF training, their combination, and a control group on sequential finger tapping performance before and after a 30-minute training session.
  • Results showed MI significantly enhanced motor performance immediately and at 20 minutes after training compared to control, while only the combination of MI and EEG-NF improved performance 24 hours post-training, suggesting potential benefits for rehabilitation strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!