AI Article Synopsis

  • Chemical modifications to aromatic spacers in 2D perovskites can enhance both optoelectronic properties and stability, though the mechanisms behind this are not fully understood.
  • The study uses 2D phenyl-based perovskites to show that the arrangement and orientation of aromatic cations significantly affect the bandgap and charge transport, revealing that specific stacking leads to different bandgap types.
  • The findings indicate that adjusting the orientation of the phenyl rings, especially through molecular engineering, can improve carrier mobility and overall performance of 2D perovskite optoelectronics.

Article Abstract

Chemical modifications on aromatic spacers of 2D perovskites have been demonstrated to be an effective strategy to simultaneously improve optoelectronic properties and stability. However, its underlying mechanism is poorly understood. By using 2D phenyl-based perovskites ([C H (CH ) NH ] PbI ) as models, the authors have revealed how the chemical nature of aromatic cations tunes the bandgap and charge transport of 2D perovskites by utilizing sum-frequency generation vibrational spectroscopy to determine the stacking arrangement and orientation of aromatic cations. It is found that the antiparallel slip-stack arrangement of phenyl rings between adjacent layers induces an indirect band gap, resulting in anomalous carrier dynamics. Incorporation of the CH moiety causes stacking rearrangement of the phenyl ring and thus promotes an indirect to direct bandgap transition. In direct-bandgap perovskites, higher carrier mobility correlates with a larger orientation angle of the phenyl ring. Further optimizing the orientation angle by introducing a para-substituted element in a phenyl ring, higher carrier mobility is obtained. This work highlights the importance of leveraging stacking arrangement and orientation of the aromatic cations to tune the photophysical properties, which opens up an avenue for advancing high-performance 2D perovskites optoelectronics via molecular engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202303449DOI Listing

Publication Analysis

Top Keywords

aromatic cations
16
stacking arrangement
12
arrangement orientation
12
orientation aromatic
12
phenyl ring
12
cations tune
8
bandgap charge
8
charge transport
8
higher carrier
8
carrier mobility
8

Similar Publications

The selective amination of aromatic C-H bonds is a powerful strategy to access aryl amines, functionalities found in many pharmaceuticals and agrochemicals. Despite advances in the field, a platform for the direct, selective C-H amination of electronically diverse (hetero)arenes, particularly electron-deficient (hetero)arenes, remains an unaddressed fundamental challenge. In addition, many (hetero)arenes present difficulty in common selective pre-functionalization reactions, such as halogenation , or metal-catalyzed borylation and silylation .

View Article and Find Full Text PDF

Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies.

Int J Phytoremediation

January 2025

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China.

Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil.

View Article and Find Full Text PDF

Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering.

J Am Chem Soc

January 2025

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!