A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolutionary histories of breast cancer and related clones. | LitMetric

AI Article Synopsis

  • Recent studies show that cancer mutations can evolve in normal tissues, which may lead to cancer development, but we still need to understand the sequence of events that trigger this transformation.
  • By analyzing samples from both cancerous and non-cancerous lesions, researchers identified specific evolutionary pathways in breast cancers with a common mutation (der(1;16)), revealing a timeline from early puberty to late adolescence before cancer clones emerged.
  • The research indicates that multiple independent cancer clones can arise from non-cancerous ancestors within the breast tissue, leading to varied tumor characteristics, and highlights the influence of local environments on cancer development.

Article Abstract

Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient's early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432280PMC
http://dx.doi.org/10.1038/s41586-023-06333-9DOI Listing

Publication Analysis

Top Keywords

driver events
12
cancer
9
evolutionary histories
8
histories breast
8
breast cancer
8
normal tissues
8
cancer non-cancer
8
breast cancers
8
breast
5
clones
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!