Soft and stretchable electronics have emerged as highly promising tools for biomedical diagnosis and biological studies, as they interface intimately with the human body and other biological systems. Most stretchable electronic materials and devices, however, still have Young's moduli orders of magnitude higher than soft bio-tissues, which limit their conformability and long-term biocompatibility. Here, we present a design strategy of soft interlayer for allowing the use of existing stretchable materials of relatively high moduli to versatilely realize stretchable devices with ultralow tissue-level moduli. We have demonstrated stretchable transistor arrays and active-matrix circuits with moduli below 10 kPa-over two orders of magnitude lower than the current state of the art. Benefiting from the increased conformability to irregular and dynamic surfaces, the ultrasoft device created with the soft interlayer design realizes electrophysiological recording on an isolated heart with high adaptability, spatial stability, and minimal influence on ventricle pressure. In vivo biocompatibility tests also demonstrate the benefit of suppressing foreign-body responses for long-term implantation. With its general applicability to diverse materials and devices, this soft-interlayer design overcomes the material-level limitation for imparting tissue-level softness to a variety of bioelectronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372055PMC
http://dx.doi.org/10.1038/s41467-023-40191-3DOI Listing

Publication Analysis

Top Keywords

soft interlayer
12
tissue-level softness
8
stretchable electronics
8
interlayer design
8
materials devices
8
orders magnitude
8
stretchable
6
soft
5
achieving tissue-level
4
softness stretchable
4

Similar Publications

Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics.

Phys Rev Lett

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.

View Article and Find Full Text PDF

Organic multilayer systems, which are stacked layers of different organic materials, are used in various organic electronic devices such as organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). In particular, OFETs are promising as key components in flexible electronic devices. In this study, we investigated how the inclusion of an insulating tetratetracontane (TTC) interlayer in ambipolar indigo-based OFETs can be used to alter the crystallinity and electrical properties of the indigo charge transport layer.

View Article and Find Full Text PDF

High-Performance InP Quantum-Dot Light-Emitting Diodes with a NiO Nanoparticle-Embedded Hybrid Emissive Layer.

ACS Appl Mater Interfaces

December 2024

Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and SOFT Foundry Institute, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Quantum-dot (QD) light-emitting diodes (QLEDs) are garnering significant attention owing to their superb optoelectrical properties, but the overinjection of electrons compared to holes into the emissive layer (EML) is still a critical obstacle to be resolved. Current approaches, such as inserting a charge-balancing interlayer and mixing p-type organic additives into the EML, face issues of process complexity and poor miscibility. In this work, we demonstrate efficient InP QLEDs by simply embedding NiO nanoparticles (NPs) into the EML which forms a homogeneous QD-metal oxide hybrid EML.

View Article and Find Full Text PDF
Article Synopsis
  • The study challenges the conventional understanding of covalent organic frameworks (COFs) by revealing two distinct pore types in a widely studied imine-based COF through real-space imaging.
  • Real-space imaging led to a reconsideration of the structural model, emphasizing differences in pore configurations and the presence of previously unidentified defects.
  • This research underscores the complexity of COF structures and the necessity for advanced characterization methods to accurately assess their properties and potential applications.
View Article and Find Full Text PDF

Enhanced Basal-Plane Catalytic Activity of MoS by Constructing an Electron Bridge for High-Performance Lithium-Sulfur Batteries.

Nano Lett

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China.

MoS is a promising sulfur host material for lithium-sulfur (Li-S) batteries, but its low conductivity and limited active edge sites largely inhibit the catalytic activity toward the conversion of lithium polysulfides (LiPSs). Herein, we propose an electron bridge strategy by combining interlayer structure modification and electronic modulation to activate the basal-plane catalytic activity of MoS for the highly efficient catalytic conversion of LiPSs. As validated by experimental characterizations and theoretical calculations, the proposed strategy not only creates a conductive network but also induces delocalized electron redistribution within the MoS basal planes, leading to facilitated interfacial charge transfer kinetics and accelerated LiPSs redox kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!