DNA framework-engineered chimeras platform enables selectively targeted protein degradation.

Nat Commun

Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.

Published: July 2023

AI Article Synopsis

Article Abstract

A challenge in developing proteolysis targeting chimeras (PROTACs) is the establishment of a universal platform applicable in multiple scenarios for precise degradation of proteins of interest (POIs). Inspired by the addressability, programmability, and rigidity of DNA frameworks, we develop covalent DNA framework-based PROTACs (DbTACs), which can be synthesized in high-throughput via facile bioorthogonal chemistry and self-assembly. DNA tetrahedra are employed as templates and the spatial position of each atom is defined. Thus, by precisely locating ligands of POI and E3 ligase on the templates, ligand spacings can be controllably manipulated from 8 Å to 57 Å. We show that DbTACs with the optimal linker length between ligands achieve higher degradation rates and enhanced binding affinity. Bispecific DbTACs (bis-DbTACs) with trivalent ligand assembly enable multi-target depletion while maintaining highly selective degradation of protein subtypes. When employing various types of warheads (small molecules, antibodies, and DNA motifs), DbTACs exhibit robust efficacy in degrading diverse targets, including protein kinases and transcription factors located in different cellular compartments. Overall, utilizing modular DNA frameworks to conjugate substrates offers a universal platform that not only provides insight into general degrader design principles but also presents a promising strategy for guiding drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372072PMC
http://dx.doi.org/10.1038/s41467-023-40244-7DOI Listing

Publication Analysis

Top Keywords

universal platform
8
dna frameworks
8
dna
6
dna framework-engineered
4
framework-engineered chimeras
4
chimeras platform
4
platform enables
4
enables selectively
4
selectively targeted
4
targeted protein
4

Similar Publications

IdenHerb: A strategy for identifying constitutive herbs of herbal products by screening exclusive ions of each herb from large-scale multi-group LC-MS data.

J Chromatogr A

January 2025

Division of Pharmacognosy, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China; Medical College, Tibet University, Lhasa 850002, China. Electronic address:

Identification of constitutive herbs in an herbal product is critical for ensuring its quality and efficacy. However, current identification methods often lack universality, entail long durations, and involve complex procedures. Therefore, there is an urgent need to develop innovative methods for identifying constitutive herbs.

View Article and Find Full Text PDF

Ultra-Sensitive Aptamer-Based Diagnostic Systems for Rapid Detection of All SARS-CoV-2 Variants.

Int J Mol Sci

January 2025

Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea.

The emergence of numerous SARS-CoV-2 variants, characterized by mutations in the viral RNA genome and target proteins, has presented challenges for accurate COVID-19 diagnosis. To address this, we developed universal aptamer probes capable of binding to the spike proteins of SARS-CoV-2 variants, including highly mutated strains like Omicron. These aptamers were identified through protein-based SELEX using spike proteins from three key variants (D614G-substituted Wuhan-Hu-1, Delta, and Omicron) and virus-based SELEX, known as viro-SELEX.

View Article and Find Full Text PDF

Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses.

Vaccines (Basel)

January 2025

Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.

An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).

View Article and Find Full Text PDF

Scaling and networking a modular photonic quantum computer.

Nature

January 2025

Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.

Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.

View Article and Find Full Text PDF

Group A Streptococcus (Strep A) is a human-exclusive bacterial pathogen killing annually more than 500,000 patients, and no current licensed vaccine exists. Strep A bacteria are highly diverse, but all produce an essential, abundant, and conserved surface carbohydrate, the Group A Carbohydrate, which contains a rhamnose polysaccharide (RhaPS) backbone. RhaPS is a validated universal vaccine candidate in a glycoconjugate prepared by chemical conjugation of the native carbohydrate to a carrier protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!