This study aimed to simulate ventricular responses to elevations in myocyte pacing and adrenergic stimulation using a novel electrophysiological rat model and investigate ion channel responses underlying action potential (AP) modulations. Peak ion currents and AP repolarization to 50% and 90% of full repolarization (APD ) were recorded during simulations at 1-10 Hz pacing under control and adrenergic stimulation conditions. Further simulations were performed with incremental ion current block (L-type calcium current, I ; transient outward current, I ; slow delayed rectifier potassium current, I ; rapid delayed rectifier potassium current, I ; inward rectifier potassium current, I ) to identify current influence on AP response to exercise. Simulated APD closely resembled experimental findings. Rate-dependent increases in I (6%-101%), I (141%-1339%), and I (0%-15%) and reductions in I (11%-57%) and I (1%-9%) were observed. Meanwhile, adrenergic stimulation triggered moderate increases in all currents (23%-67%) except I . Further analyses suggest AP plateau is most sensitive to modulations in I and I while late repolarization is most sensitive to I , I , and I , with alterations in I predominantly stimulating the greatest magnitude of influence on late repolarization (35%-846% APD prolongation). The modified Leeds rat model (mLR) is capable of accurately modeling APs during physiological stress. This study highlights the importance of I , I , I and I in controlling electrophysiological responses to exercise. This work will benefit the study of cardiac dysfunction, arrythmia, and disease, though future physiologically relevant experimental studies and model development are required.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371833PMC
http://dx.doi.org/10.14814/phy2.15766DOI Listing

Publication Analysis

Top Keywords

adrenergic stimulation
16
rectifier potassium
12
potassium current
12
underlying action
8
action potential
8
pacing adrenergic
8
rat model
8
delayed rectifier
8
late repolarization
8
current
7

Similar Publications

Sympathoexcitation is a hallmark of heart failure, with sustained β-adrenergic receptor (βAR)-G protein signaling activation. βAR signaling is modulated by regulator of G protein signaling (RGS) proteins. Previously, we reported that Gα regulation by RGS2 or RGS5 is key to ventricular rhythm regulation, while the dual loss of both RGS proteins results in left ventricular (LV) dilatation and dysfunction.

View Article and Find Full Text PDF

Mirtazapine is a selective serotonergic antidepressant that functions by blocking adrenergic alpha2-autoreceptors and heteroreceptors and inhibiting 5-HT2 and 5-HT3 receptors. It is a noradrenergic drug. Mirtazapine has anxiolytic or sleep-quality-improving effects, aggravates appetite-stimulation, and has stomach emptying functions.

View Article and Find Full Text PDF

The spleen in ischaemic heart disease.

Nat Rev Cardiol

January 2025

Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.

Article Synopsis
  • Ischaemic heart disease results from coronary atherosclerosis, which is linked to systemic inflammation involving various immune cells released by the spleen.
  • Prolonged inflammation can lead to ischaemic heart failure, while the spleen's interaction with the nervous system can modulate immune responses and protect the heart from damage.
  • Splenectomy, which removes the spleen, increases mortality risk from ischaemic heart disease, highlighting the spleen's crucial role in immune responses and cardiovascular protection.
View Article and Find Full Text PDF

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia disorder characterized by ventricular arrhythmia triggered by adrenergic stimulation.

Case Presentation: A 9-year-old boy presented with convulsions following physical exertion. Bidirectional ventricular tachycardia (VT) during a treadmill test led to the diagnosis of catecholaminergic polymorphic ventricular tachycardia (CPVT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!