The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc.

Matrix Biol

Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK. Electronic address:

Published: September 2023

The circadian clock in mammals temporally coordinates physiological and behavioural processes to anticipate daily rhythmic changes in their environment. Chronic disruption to circadian rhythms (e.g., through ageing or shift work) is thought to contribute to a multitude of diseases, including degeneration of the musculoskeletal system. The intervertebral disc (IVD) in the spine contains circadian clocks which control ∼6% of the transcriptome in a rhythmic manner, including key genes involved in extracellular matrix (ECM) homeostasis. However, it remains largely unknown to what extent the local IVD molecular clock is required to drive rhythmic gene transcription and IVD physiology. In this work, we identified profound age-related changes of ECM microarchitecture and an endochondral ossification-like phenotype in the annulus fibrosus (AF) region of the IVD in the Col2a1-Bmal1 knockout mice. Circadian time series RNA-Seq of the whole IVD in Bmal1 knockout revealed loss of circadian patterns in gene expression, with an unexpected emergence of 12 h ultradian rhythms, including FOXO transcription factors. Further RNA sequencing of the AF tissue identified region-specific changes in gene expression, evidencing a loss of AF phenotype markers and a dysregulation of ECM and FOXO pathways in Bmal1 knockout mice. Consistent with an up-regulation of FOXO1 mRNA and protein levels in Bmal1 knockout IVDs, inhibition of FOXO1 in AF cells suppressed their osteogenic differentiation. Collectively, these data highlight the importance of the local molecular clock mechanism in the maintenance of the cell fate and ECM homeostasis of the IVD. Further studies may identify potential new molecular targets for alleviating IVD degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2023.07.002DOI Listing

Publication Analysis

Top Keywords

bmal1 knockout
12
extracellular matrix
8
cell fate
8
intervertebral disc
8
ecm homeostasis
8
molecular clock
8
knockout mice
8
gene expression
8
ivd
7
circadian
5

Similar Publications

Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.

View Article and Find Full Text PDF

Cardiovascular health requires the orchestration of the daily rhythm of blood pressure (BP), which responds to changes in light exposure and dietary patterns. Whether rhythmic light and feeding can modulate daily BP rhythm directly or via modulating intrinsic core clock gene is unknown. Using inducible global knockout mice (iBmal1KO), we explored the impact of rhythmic light, rhythmic feeding, or their combination on various physiological parameters.

View Article and Find Full Text PDF

[Effects of high-fat diet on the morphology and function of the thyroid gland and glycolipid metabolism in thyroid clock gene Bmal1 knockout mice].

Zhonghua Yi Xue Za Zhi

December 2024

Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou510080, China.

To investigate the changes in thyroid morphology and function in mice with thyroid-specific knockout of the clock gene Bmal1 under high-fat diet (HFD), and to examine its effects on glycolipid metabolism in mice. Construct a mouse model with specific knockout of the Bmal1 gene in the thyroid (T-Bmal1) (knockout group, =10), and use Bmal1 mice without thyroid peroxidase-cyclization recombination enzyme (T-Bmal1) as the control group (non-knockout group, =10). The mice were fed until 6 weeks (body weight 20-23 g), and then use the random number table method to evenly divide each group of mice into two subgroups.

View Article and Find Full Text PDF

Macrophages are innate immune cells that orchestrate the process of inflammation, which varies across time of day. This ensures appropriate biological timing of the immune response with the external environment. The NLRP3 inflammasome mediates IL-1-family cytokine release via pyroptosis.

View Article and Find Full Text PDF

Monocyte/Macrophage-Specific Loss of ARNTL Suppresses Chronic Kidney Disease-Associated Cardiac Impairment.

Int J Mol Sci

December 2024

Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Defects in Aryl hydrocarbon receptor nuclear translocator-like 1 (ARNTL), a central component of the circadian clock mechanism, may promote or inhibit the induction of inflammation by monocytes/macrophages, with varying effects on different diseases. However, ARNTL's role in monocytes/macrophages under chronic kidney disease (CKD), which presents with systemic inflammation, is unclear. Here, we report that the expression of in monocytes promoted CKD-induced cardiac damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!