Objective: This study aimed to confirm that G protein-coupled estrogen receptor 1 (GPER1) deficiency affects cognitive function by reducing hippocampal neurogenesis via the PKA/ERK/IGF-I signaling pathway in mice with schizophrenia (SZ).

Methods: Mice were divided into four groups, namely, KO Con, WT Con, KO Con, and WT SZ (n = 12 in each group). All mice were accustomed to the behavioral equipment overnight in the testing service room. The experimental conditions were consistent with those in the animal house. Forced swimming test and Y-maze test were conducted. Neuronal differentiation and maturation were detected using immunofluorescence and confocal imaging. The protein in the PKA/ERK/IGF-I signaling pathway was tested using Western blot analysis.

Results: GPER1 KO aggravated depression during forced swimming test and decreased cognitive ability during Y-maze test in the mouse model of dizocilpine maleate (MK-801)-induced SZ. Immunofluorescence and confocal imaging results demonstrated that GPER1 knockout reduced adult hippocampal dentate gyrus neurogenesis. Furthermore, GPER1-KO aggravated the hippocampal damage induced by MK-801 in mice through the PKA/ERK/IGF-I signaling pathway.

Conclusions: GPER1 deficiency reduced adult hippocampal neurogenesis and neuron survival by regulating the PKA/ERK/IGF-I signaling pathway in the MK-801-induced mouse model of SZ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchemneu.2023.102319DOI Listing

Publication Analysis

Top Keywords

pka/erk/igf-i signaling
16
adult hippocampal
12
hippocampal neurogenesis
12
signaling pathway
12
protein-coupled estrogen
8
estrogen receptor
8
mice schizophrenia
8
gper1 deficiency
8
con con
8
forced swimming
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!