A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogeochemical changes during artificial groundwater well recharge. | LitMetric

Hydrogeochemical changes during artificial groundwater well recharge.

Sci Total Environ

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.

Published: November 2023

Artificial groundwater recharge is a relatively economic and efficient method for solving shortages and uneven spatial-temporal distribution of water resources. Changes in groundwater quality during the recharge process are a key issue that must be addressed. Identifying the hydrogeochemical reactions that occur during recharge can be vital in predicting trends in groundwater quality. However, there are few studies on the evolution of groundwater quality during artificial recharge that comprehensively consider environmental, chemical, organic matter, and microbiological indicators. Based on an artificial groundwater recharge experiment in Xiong'an New Area, this study investigated the hydrogeochemical changes during groundwater recharge through a well. The results indicate that (1) as large amounts of recharge water (RW) were injected, the groundwater level initially rose rapidly, then fluctuated slowly, and finally rose again. (2) Water quality indicators, dissolved organic matter (DOM), and microbial communities were influenced by the mixture of RW and the background groundwater before recharge (BGBR), as well as by water-rock interactions, such as mineral dissolution-precipitation and redox reactions. (3) During well recharge, aerobic respiration, nitrification, denitrification, high-valence manganese (Mn) and iron (Fe) minerals reduction dissolution, and Mn and Fe oxidation-precipitation occurred sequentially. (4) DOM analysis showed that protein-like substances in the BGBR were the main carbon sources for aerobic respiration and denitrification, while humic-like substances carried by the RW significantly enhanced Mn and Fe minerals reduction dissolution. Therefore, RW quality significantly affects groundwater quality after artificial groundwater well recharge. Controlling indicators, such as dissolved oxygen (DO) and DOM, in the RW can effectively reduce harm to groundwater quality after recharge. This study is of theoretical and practical significance for in-depth analysis of the evolution of groundwater quality during artificial well recharge, prediction of trends in groundwater quality during and after recharge and ensuring groundwater quality safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165778DOI Listing

Publication Analysis

Top Keywords

groundwater quality
32
artificial groundwater
16
well recharge
16
groundwater recharge
16
groundwater
15
recharge
14
quality recharge
12
quality artificial
12
quality
10
hydrogeochemical changes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!