Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Food waste (FW) has become a worldwide issue, while anaerobic digestion (AD) has appeared as a widely adopted technology to recover energy and resources from FW. Compared to many existing case studies of centralized AD system, the comprehensive study of decentralized micro-AD system from both system energy efficiency and carbon emission perspective is still scanty, particularly system operated under ambient temperature conditions. In this study, an actual decentralized micro-AD system with treating capacity of 300 kg FW/d for a local hawker center in Singapore was reported and evaluated. The results showed that 1894.5 kg of FW was treated and 173 m biogas with methane content of 53 % was produced during the experimental period of 75 days. The methane yield results showed a high FW degradation efficiency (87.87 %). However, net energy consumption and net carbon emission were observed during the experimental period. Nevertheless, energy self-efficiency and carbon neutrality, even net energy output and carbon reduction, can be achieved by increasing daily FW loading and biogas engine efficiency. Specifically, the FW loading for system energy self-efficiency was identified as 159 kg/d for engine efficiency of 35 % at a high kitchen waste/table waste ratio (63 %/37 %, with covid-19 dine-in restrictions); while they were 112 and 58 kg/d for engine efficiency of 25 % and 35 %, respective, at a low kitchen waste/table waste ratio (31 %/69 %, without covid-19 dine-in restrictions). The carbon emission ranged from 156.08 kg CO-eq/t FW to -77.35 kg CO-eq/t FW depending on the FW loading quantity and engine efficiency. Moreover, the sensitivity analysis also showed that the used electricity source for substitution influenced the carbon emission performance significantly. The obtained results imply that the decentralized micro-AD system could be a feasible FW management solution for energy generation and carbon reduction when the FW loading and engine electrical efficiency are carefully addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.165783 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!