A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decreased expression of Chrna4 by METTL3-mediated m6A modification participates in BPA-induced spatial memory deficit. | LitMetric

Bisphenol A (BPA), a widely used endocrine disruptor, has been implicated in cognitive impairment via epigenetic machinery. N6-methyl adenosine (m6A) has recently emerged as a new epigenetic factor that influences cognition, but the role of m6A in BPA induced cognitive deficits has not been explored yet. In this study, we found increased global m6A abundance accompanied with elevated expression of methyltransferase-like 3 (METTL3) in hippocampal neurons following BPA exposure. Inhibition of METTL3 activity by selective METTL3 inhibitor 2457 (STM) in cultured neurons abolished BPA induced m6A upregulation and abnormal synaptic transmission. Additionally, knockdown of METTL3 in hippocampus abrogated BPA induced learning and memory deficit in rats. Further study showed that m6A modification was enriched in mRNA of cholinergic receptor nicotinic alpha 4 subunit (Chrna4). Inhibition of METTL3 either by STM or shRNA restored BPA induced downregulation of Chrna4, suggesting that Chrna4 may be a potential target involved in BPA induced neurotoxicity that modified by m6A. Collectively, our findings demonstrated that METTL3 mediated m6A modification was involved in BPA induced cognitive deficit with Chrna4 as a potential target, which enriched our understanding of the role of epigenetics (RNA modifications) in BPA induced neurotoxicity and provided new insights into BPA or its substitutes induced damages in other organs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.116717DOI Listing

Publication Analysis

Top Keywords

bpa induced
28
m6a modification
12
bpa
10
m6a
8
memory deficit
8
induced
8
induced cognitive
8
inhibition mettl3
8
chrna4 potential
8
potential target
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!