A functional bipolar electrode-electrochemiluminescence (BPE-ECL) platform based on biocathode reducing oxygen was constructed for detecting electrochemically active bacteria (EAB) in this paper. Firstly, thiolated trimethylated chitosan quaternary ammonium salt (TMC-SH) layer was assembled on the gold-plated cathode of BPE. TMC-SH contains quaternary ammonium salt branch chain, which can inhibit the growth of microorganisms on the surface or in the surrounding environment while absorbing bacteria. Then, the peristaltic pump was used to flow all of the samples through the cathode, and the EAB was electrostatically adsorbed on the electrode surface. Finally, applying a constant potential to the BPE, bacteria can catalyze electrochemical reduction of O, and decrease the overpotential of O reduction at the cathode, which in turn generates an ECL reporting intensity change at the anode. In this way, live and dead bacteria can be distinguished, and the influence of complex food substrates on detection can be greatly reduced.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.136919DOI Listing

Publication Analysis

Top Keywords

electrochemically active
8
active bacteria
8
bipolar electrode-electrochemiluminescence
8
quaternary ammonium
8
ammonium salt
8
bacteria
5
rapid screening
4
screening electrochemically
4
bacteria based
4
based biocathode-functional
4

Similar Publications

Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.

View Article and Find Full Text PDF

Engineering Atom-Scale Cascade Catalysis via Multi-Active Site Collaboration for Ampere-Level CO Electroreduction to C Products.

Adv Mater

January 2025

International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.

Electrochemical reduction of CO to value-added multicarbon (C) productions offers an attractive route for renewable energy storage and CO utilization, but it remains challenging to achieve high C selectivity at industrial-level current density. Herein, a MoCu single-atom alloy (SAA) catalyst is reported that displays a remarkable C Faradaic efficiency of 86.4% under 0.

View Article and Find Full Text PDF

In the realm of materials science and engineering, the pursuit of advanced materials with tailored properties has been a driving goal behind technological progress. Scientific interest in laser powder bed fusion (L-PBF) fabricated NiTi alloy has in recent times seen an upsurge of activity. In this study, we investigate the impact of varying volume energy density (VED) during L-PBF on the microstructure and corrosion behaviour of NiTi alloys in both scan (XY) and built (XZ) planes.

View Article and Find Full Text PDF

Enhancing catalytic activity in MoC nanodots via nitrogen doping and graphene integration for efficient hydrogen evolution under alkaline conditions.

J Colloid Interface Sci

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, MOE Engineering Research Center of Photoresist Materials, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:

Due to its exceptional electronic properties and catalytic activity, MoC has garnered significant attention for its application in electrocatalysis, particularly for the hydrogen evolution reaction (HER). However, several critical challenges continue to impede its widespread use, especially under strongly alkaline conditions. A primary obstacle is the enhancement of its intrinsic activity through further modification strategies, which remains a key limitation for its broader utilization.

View Article and Find Full Text PDF

Tuning the spin state of the iron center by FePc/Mg(OH) heterojunction boosting oxygen reduction performance.

J Colloid Interface Sci

January 2025

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China. Electronic address:

Iron phthalocyanine (FePc) is a promising non-noble metal catalyst for oxygen reduction reaction (ORR). While, with the plane-symmetric FeN site, the ORR activity of FePc is generally low due to its low ability to adsorb and activate O. Herein, we anchor FePc on Mg(OH)/N-doped carbon nanosheets building the ternary plate-like catalyst FePc/Mg(OH)/NC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!