Introduction: PROteolysis-TArgeting Chimeras (PROTACs) allow the selective degradation of a protein of interest (POI) by the ubiquitin-proteasome system (UPS). With this unique mechanism of action, the research and development of PROTACs that target the Breakpoint Cluster Region Abelson (BCR-ABL) tyrosine kinase (TK) has been increasing dramatically, as they are promising molecules in the treatment of Chronic Myeloid Leukemia (CML), one of the main hematological malignancies, which results from an uncontrolled myeloproliferation due to the constitutive activation of BCR-ABL.
Areas Covered: This review summarizes the patents/applications published in the online databases like Espacenet or World Intellectual Property Organization regarding PROTACs that promote BCR-ABL degradation. Patents will be described mostly in terms of chemical structure, biochemical/pharmacological activities, and potential clinical applications.
Expert Opinion: The recent discovery of the enormous potential of PROTACs led to the creation of new compounds capable of degrading BCR-ABL for the treatment of CML. Although still in reduced numbers, and in the pre-clinical phase of development, some compounds have already been shown to overcome some of the difficulties presented by conventional BCR-ABL inhibitors, such as the well-known imatinib. Therefore, it is very likely that some of the present PROTACs will enter future CML therapy in the coming years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13543776.2023.2240025 | DOI Listing |
Cancers (Basel)
December 2024
Sarcoma Unit, The Royal Marsden Hospital and Institute of Cancer Research, London SW3 6JZ, UK.
There has been noteworthy progress in molecular characterisation and therapeutics in soft tissue sarcomas. Novel agents have gained regulatory approval by the FDA. Examples are the tyrosine kinase inhibitors avapritinib and ripretinib in gastrointestinal stromal tumours (GIST), the immune check point inhibitor atezolizumab in alveolar soft part tissue sarcoma, the γ-secretase inhibitor nirogacestat in desmoid tumours, the NTRK inhibitors larotrectinib and entrectinib in tumours with fusions, the mTOR inhibitor nab-sirolimus in PEComa, and the EZH-2 inhibitor tazemetostat in epithelioid sarcoma.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.
Proteolysis-targeting chimeras (PROTACs) represent a transformative advancement in drug discovery, offering a method to degrade specific intracellular proteins. Unlike traditional inhibitors, PROTACs are bifunctional molecules that target proteins for elimination, enabling the potential treatment of previously "undruggable" proteins. This concept, pioneered by Crews and his team, introduced the use of small molecules to link a target protein to an E3 ubiquitin ligase, inducing ubiquitination and subsequent degradation of the target protein.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Chemistry, Illinois State University, Normal, Il, USA.
Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that target undruggable proteins, enhance selectivity and prevent target accumulation through catalytic activity. The unique structure of PROTACs presents challenges in structural identification and drug design. Liquid chromatography (LC), combined with mass spectrometry (MS), enhances compound annotation by providing essential retention time (RT) data, especially when MS alone is insufficient.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410003, China.
Motivation: Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!