Single-cell RNA sequencing has become an important method to identify cell types, delineate the trajectories of cell differentiation in whole organisms, and understand the heterogeneity in cellular responses. Nevertheless, sample collection and processing remain a severe bottleneck for single-cell RNA sequencing experiments. Cell isolation protocols often lead to significant changes in the transcriptomes of cells, requiring novel methods to preserve cell states. Here, we developed and benchmarked protocols using glyoxal as a fixative for single-cell RNA sequencing applications. Using Drop-seq methodology, we detected a large number of transcripts and genes from glyoxal-fixed Drosophila cells after single-cell RNA sequencing. The effective glyoxal fixation of transcriptomes in Drosophila and human cells was further supported by a high correlation of gene expression data between glyoxal-fixed and unfixed samples. Accordingly, we also found highly expressed genes overlapping to a large extent between experimental conditions. These results indicated that our fixation protocol did not induce considerable changes in gene expression and conserved the transcriptome for subsequent single-cell isolation procedures. In conclusion, we present glyoxal as a suitable fixative for Drosophila cells and potentially cells of other species that allow high-quality single-cell RNA sequencing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542564 | PMC |
http://dx.doi.org/10.1093/g3journal/jkad160 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Ultrasonography, Fuwai Yunnan Hospital, Chinese Academy of Medical, Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China. Electronic address:
Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.
View Article and Find Full Text PDFT-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA. Electronic address:
Host response to environmental exposures such as pathogens and chemicals can include modifications to the epigenome and transcriptome. Improved signature discovery, including the identification of the agent and timing of exposure, has been enabled by advancements in assaying techniques to detect RNA expression, DNA base modifications, histone modifications, and chromatin accessibility. The interrogation of the epigenome and transcriptome cascade requires analyzing disparate datasets from multiple assay types, often at single-cell resolution, derived from the same biospecimen.
View Article and Find Full Text PDFDiscov Oncol
January 2025
West China School of Medicine, Sichuan University, Chengdu, China.
Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!