The current work evaluated the efficacy of 10 commercial acaricides in different pHs (4.5, 5.5, and 6.5) in laboratory (adult immersion tests (AIT), pH evaluation over time) and field assays (tick counts and efficacy). In the AIT (n=70), higher efficacies were obtained when the acaricide emulsion had a more acidic pH (4.5), mainly for two combinations of pyrethroids + organophosphate (acaricide 3 and acaricide 9). For amidine, a higher pH (6.5) showed a higher efficacy. Over time, there was a trend in the pH of these emulsions increasing. When the efficacy of chlorpyrifos + cypermethrin + piperonyl butoxide (acaricide 3) at different pHs was evaluated over time (0, 6, 12, and 24h) by AIT, the less acidic pH (6.5) showed a strongly variation in the acaricide efficacy range. The mean pH of the water samples from different regions of Brazil was 6.5. In the field, the association of pyrethroid + organophosphates (acaricide 9) with pH of 4.5 and 5.5 were more effective in tick control than the emulsion prepared with this same spray formulation at pH 6.5. The pH of the acaricide emulsions is an important point of attention and is recommended that the veterinary industry start to develop/share information regarding how the pH can affect the acaricide efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-023-07927-yDOI Listing

Publication Analysis

Top Keywords

acaricide emulsion
8
acaricide
8
acaricide efficacy
8
efficacy
6
influence acaricide
4
emulsion effectiveness
4
effectiveness spray
4
spray products
4
products control
4
control cattle
4

Similar Publications

A novel sanitizer tablet containing clove essential oil (CO) microemulsion was developed. A preformulation study using nuclear magnetic resonance and thermal analyses showed component compatibility. The main components of the samples remained intact despite a color change, probably due to a strong acid-base interaction between eugenol and diethanolamine.

View Article and Find Full Text PDF

Tick control mainly depends on using chemical acaricides that have led to the emergence of resistant tick populations along with environmental hazards. Natural alternatives including essential oils are now widely used to avoid the undesirable effects of chemicals on human, animals and environment. In this study, three commercial oils (myrrh, patchouli, and cypress) and their nanoemulsions (NEs) were tested against Rhipicephalus sanguineus sensu lato unfed adults.

View Article and Find Full Text PDF

Ticks, particularly Rhipicephalus annulatus, pose significant threats to livestock, causing economic losses and transmitting various infectious diseases. This study aimed to evaluate the potential acaricidal properties of garlic oil and its nanoemulsion against ticks infesting cattle, Rhipicephalus annulatus through the evaluation of mortality rate and morphological changes of the treated ticks. The study also included prevalence, risk factors, and molecular confirmation of tick species.

View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) containing Cymbopogon citratus essential oil: Enhancing the stability and acaricide efficacy against Rhipicephalus (Boophilus) microplus.

Vet Parasitol

June 2024

Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai Univesity, Chiang Mai 50100Thailand; Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand. Electronic address:

The objectives of this study were to develop a self-emulsifying drug delivery system (SEDDS) to enhance the stability and efficacy of Cymbopogon citratus essential oil or lemongrass oil (LEO) against cattle tick larvae and engorged females. The system with the highest oil loading in SEDDS was composed of LEO (23.33%w/w), Tween 80: SGKH 4000 in a 2:1 ratio as surfactant (66.

View Article and Find Full Text PDF

Management potentiality of emulsions based on essential oil of and for spider mite: a possible alternative for agroecological control.

Nat Prod Res

March 2024

Programa de Pós-graduação em Agroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Campus de Alegre, Alegre, Brazil.

, popularly known as spider mite, is a pest that causes several economic losses to crops. Thus, this work evaluated the effect of essential oils from the leaves of and on managing . The chemical compounds present in essential oils were identified by gas chromatography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!