Moraxella nasibovis sp. nov., Isolated from a Cow with Respiratory Disease.

Curr Microbiol

Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China.

Published: July 2023

Strain ZY190618, isolated from the nasal cavity of a cow with respiratory disease, was subjected to taxonomic characterization. Cells of the strain were Gram-stain-negative, aerobic and coccus-shaped. Phylogenetic analysis based on 16 S rRNA gene sequences indicated that the strain belonged to the genus Moraxella with the highest similarity of 98.1% to Moraxella nasovis CCUG 75922. Phylogenomic analysis based on 810 single-copy genes revealed that the strain was a member of the genus Moraxella and formed a deep and separated clade within the genus. The strain showed the highest orthologous average nucleotide identity (OrthoANI) value of 77.1% with Moraxella ovis CCUG 354 and digital DNA-DNA hybridization (dDDH) value of 24.7% with Moraxella equi NCTC 11012, respectively. The DNA G + C content was 46.5 mol%. The strain optimally grew at 37 °C (temperature range, 24-42 °C), at pH 8.0 (pH range, 6.0-9.0) and with 1.5% (w/v) NaCl (NaCl range, 0.5-3.0%). The strain contained C ω9c as the sole predominant fatty acid (> 5 %) and CoQ-8 as the major respiratory quinone. The major polar lipids included phosphatidylglycerol, phosphatidylethanolamine, cardiolipin, monolysocardiolipin and hemibismonoacylglycerophosphate. Based on these data, strain ZY190618 clearly represents a novel species in the genus Moraxella, for which the name Moraxella nasibovis sp. nov. (The type strain ZY190618 = CCUG 75921 = CCTCC AB 2021472) is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-023-03415-9DOI Listing

Publication Analysis

Top Keywords

genus moraxella
12
strain
9
moraxella
8
moraxella nasibovis
8
nasibovis nov
8
cow respiratory
8
respiratory disease
8
strain zy190618
8
analysis based
8
nov isolated
4

Similar Publications

Background Community-acquired bacterial pneumonia (CABP) is associated with a substantial healthcare burden. The emergence of multi-drug resistance in  is becoming an increasing concern in the management of CABP. This study aims to evaluate the efficacy and safety of levonadifloxacin in the treatment of CABP, focusing on both oral and intravenous (IV) therapy.

View Article and Find Full Text PDF

Discovering new antibiotics and increasing the efficacy of existing antibiotics are priorities to address antimicrobial resistance. Antimicrobial proteins and peptides (AMPPs) are considered among the most promising antibiotic alternatives and complementary therapies. Here, we build upon previous work investigating the antibacterial activity of a semi-purified hemolymph protein extract (HPE) of the Australian oyster Saccostrea glomerata.

View Article and Find Full Text PDF

Equine pastern dermatitis (EPD) is a multifactorial disease with a change in the skin microbiome. The present study monitored the influence of Biocenol™ 4/8 D37 CCM 9015 stabilized on alginite on the skin microbiota of healthy horses and model patients with EPD. Based on clinical signs, EPD lesions were identified as exudative or proliferative forms.

View Article and Find Full Text PDF

Background: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine industry worldwide, especially virulent variants arising during the last years, such as Spanish PRRSV-1 Rosalia strain. The role of the nasal microbiota in respiratory viral infections is still to be unveiled but may be promisingly related with the health status of the animals and thus, their susceptibility. The goal of this project was to study the nasal microbiota composition of piglets during a highly virulent PRRSV-1 outbreak comparing animals that died due to the infection with animals that survived it.

View Article and Find Full Text PDF

Pig nasal and rectal microbiotas are involved in the antibody response to Glaesserella parasuis.

Sci Rep

January 2025

Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.

Vaccination stands as one of the most sustainable and promising strategies to control infectious diseases in animal production. Nevertheless, the causes for antibody response variation among individuals are poorly understood. The animal microbiota has been shown to be involved in the correct development and function of the host immunity, including the antibody response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!