A cost-effective approach has been developed to synthesize Cu nanoparticles encapsulated into B and N double-doped carbon nanotubes (Cu@BCNNTs) by one-step pyrolysis. According to the specific binding of Cu-Cl and Cu-glutathione (GSH), we employed Cu@BCNNTs to build an electrochemical sensing platform to detect GSH. The unique space-confined structure can prevent Cu nanoparticles from agglomeration. In addition, B and N co-doped porous hollow tubes can improve the electrochemical conductivity, expand the number of active sites, enhance surface adsorption, and shorten the transport path. These favorable characteristics of Cu@BCNNTs make them have excellent electrocatalytic properties. These results display that the prepared sensor can detect GSH from 0.5 to 120 μM with a detection limit of 0.024 μM. The obtained sensors can be successfully applied in the human serum with recovery of GSH ranging from 100.2 to 103.9%. This work provides a new vision to synthesize nanoparticles confined in a hollow tube for the applications in biosensing and medical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-023-05893-xDOI Listing

Publication Analysis

Top Keywords

nanoparticles confined
8
co-doped porous
8
carbon nanotubes
8
synthesize nanoparticles
8
detect gsh
8
nanoreactor based
4
nanoparticles
4
based nanoparticles
4
confined co-doped
4
porous carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!