Background: Sepsis is marked by a dysregulated immune response to an infection. Invariant natural killer T cells ( i NKT cells) are a pluripotent lymphocyte subpopulation capable of affecting and coordinating the immune response to sepsis. The spleen is an important site of immune interactions in response to an infection. Splenic i NKT cells have emerged as important potential frontline mediators of chronic immune response. There are few data addressing the role splenic of i NKT cells in response to intra-abdominal polymicrobial sepsis. Methods: The cecal ligation and puncture model was used to create intra-abdominal sepsis in 8- to 12-week-old wild-type, i NKT -/- , or programmed cell death receptor-1 (PD-1) -/- mice. Twenty-four hours later, spleens were harvested. Flow cytometry was used for phenotyping using monoclonal antibodies. Cell sort was used to isolate i NKT cells. A macrophage cell line was used to assess i NKT cell-phagocyte interactions. Enzyme-linked immunosorbent assay was used for cytokine analysis. Results: Splenic i NKT-cell populations rapidly declined following induction of sepsis. Within i NKT-cell -/- mice, a distinct baseline hyperinflammatory environment was noted. Within wild type, sepsis induced an increase in splenic IL-6 and IL-10, whereas in i NKT -/- mice, there was no change in elevated IL-6 levels and a noted decrease in IL-10 expression. Further, following sepsis, PD-1 expression was increased upon spleen i NKT cells. With respect to PD-1 ligands upon phagocytes, PD-1 ligand expression was unaffected, whereas PD-L2 expression was significantly affected by the presence of PD-1. Conclusions: Invariant natural killer T cells play a distinct role in the spleen response to sepsis, an effect mediated by the checkpoint protein PD-1. Given that modulators are available in clinical trials, this offers a potential therapeutic target in the setting of sepsis-induced immune dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529630 | PMC |
http://dx.doi.org/10.1097/SHK.0000000000002185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!