A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disentangling spatiotemporal dynamics in metacommunities through a species-patch network approach. | LitMetric

Disentangling spatiotemporal dynamics in metacommunities through a species-patch network approach.

Ecol Lett

State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Published: August 2023

Colonization and extinction at local and regional scales, and gains and losses of patches are important processes in the spatiotemporal dynamics of metacommunities. However, analytical challenges remain in quantifying such spatiotemporal dynamics when species extinction-colonization and patch gain and loss processes act simultaneously. Recent advances in network analysis show great potential in disentangling the roles of colonization, extinction, and patch dynamics in metacommunities. Here, we developed a species-patch network approach to quantify metacommunity dynamics including (i) temporal changes in network structure, and (ii) temporal beta diversity of species-patch links and its components that reflect species extinction-colonization and patch gain and loss. Application of the methods to simulated datasets demonstrated that the approach was informative about metacommunity assembly processes. Based on three empirical datasets, our species-patch network approach provided additional information about metacommunity dynamics through distinguishing the effects of species colonization and extinction at different scales from patch gains and losses and how specific environmental factors related to species-patch network structure. In conclusion, our species-patch network framework provides effective methods for monitoring and revealing long-term metacommunity dynamics by quantifying gains and losses of both species and patches under local and global environmental change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.14243DOI Listing

Publication Analysis

Top Keywords

species-patch network
20
spatiotemporal dynamics
12
dynamics metacommunities
12
network approach
12
colonization extinction
12
gains losses
12
metacommunity dynamics
12
species extinction-colonization
8
extinction-colonization patch
8
patch gain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!