Jaboticaba is a tropical plant and its fruit rich in nutrients, volatile compounds, and biological activities, which considered to be an edible health benefits plant. Despite its popularity for fresh consumption, jaboticaba is rarely used in intensive processing in China. The content of nutrients and antioxidant in jaboticaba greatly impacts how it is processed healthy food. In this study, we evaluated the nutrients, antioxidant capacity, and volatile compounds of three jaboticaba cultivars including Sabara, Argentina, and Fukuoka, respectively. Our results revealed each variety has its merits. Sabara had an abundance of volatile compounds, a suitable acid-sugar ratio, and a slightly lower antioxidant capacity, making it suitable for fresh consumption. Argentina is the richest in volatile compounds in ripe fruit, but slightly lighter in taste and acid-sugar ratio, making it suitable for dry products. The large size, juicy flesh, low acid-sugar ratio, and less volatile compounds content of Fukuoka also make it suitable for juice processing. Three cultivars of jaboticaba berry exhibited different characteristics, providing reference evidence for the manufacturing and processing of jaboticaba health food.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363728PMC
http://dx.doi.org/10.3389/fpls.2023.1105373DOI Listing

Publication Analysis

Top Keywords

volatile compounds
24
acid-sugar ratio
12
three cultivars
8
cultivars jaboticaba
8
jaboticaba berry
8
fresh consumption
8
nutrients antioxidant
8
antioxidant capacity
8
making suitable
8
jaboticaba
7

Similar Publications

Analysis and prediction of atmospheric ozone concentrations using machine learning.

Front Big Data

January 2025

Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland.

Atmospheric ozone chemistry involves various substances and reactions, which makes it a complex system. We analyzed data recorded by Switzerland's National Air Pollution Monitoring Network (NABEL) to showcase the capabilities of machine learning (ML) for the prediction of ozone concentrations (daily averages) and to document a general approach that can be followed by anyone facing similar problems. We evaluated various artificial neural networks and compared them to linear as well as non-linear models deduced with ML.

View Article and Find Full Text PDF

Indoor air quality at the Arab governmental girls' schools.

F1000Res

January 2025

Auxiliary Agency for Preventive Health, Ministry of Health of Saudi Arabia, Riyadh, Saudi Arabia.

A proper and adequate school environment is important for an effective learning process and maintaining the health of the students as they spend most of their time in schools. The physical school environment includes the physical structures; presence of chemicals and biological agents; and the surrounding environment, including air, water, and materials. This study aimed to evaluate the indoor air quality (IAQ) in governmental girls' schools in the Kingdom of Saudi Arabia (KSA).

View Article and Find Full Text PDF

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).

View Article and Find Full Text PDF

Graphene, a two-dimensional material featuring densely packed sp-hybridized carbon atoms arranged in a honeycomb lattice, has revolutionized material science. Laser-induced graphene (LIG) represents a breakthrough method for producing graphene from both commercial and natural precursors via direct laser writing, offering advantages such as simplicity, efficiency, and cost-effectiveness. This study demonstrates a novel approach to synthesize a composite material exclusively from a porous organic polymer (POP) by direct femtosecond laser writing on a compressed imide-linked porous organic polymer substrate.

View Article and Find Full Text PDF

Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!