Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: (MTB), the causative agent of tuberculosis, has been a global threat to human beings for several decades. Treating tuberculosis has become more difficult as the prevalence of drug-resistant tuberculosis has increased globally. Evidence suggests that the comprehensive landscape of resistance mechanisms in MTB is ambiguous. More importantly, little is known regarding the series of events connected to resistance mechanisms in MTB before exposure to anti-TB drugs, during exposure to the drugs, and finally, when the MTB becomes resistant after exposure, upon analyses of its genome.
Methods: We used the wild-type strain of MTB (H37Rv) in an model for generating induced resistance using a sub-inhibitory concentration of isoniazid, and the generated resistance-associated variants (RAVs) were identified using the whole genome sequencing method.
Results: The detection of an promoter mutation (-15C>T), which results in increased production of InhA protein, was found to be a major mechanism for developing resistance to isoniazid in the first place. We observed adaptation of MTB resistance mechanisms in high isoniazid stress by alteration and abolishment of KatG due to the detection of S315N, the common region of mutation that confers isoniazid resistance, along with K414N, N138S, and A162E. Furthermore, we detected the -72C>T and 21C>A mutations, but further investigation is needed to determine their role in compensating for the loss of KatG activity.
Discussion: This suggests that increased InhA production is the main mechanism where there are low levels of isoniazid, whereas the alteration of KatG was found to be utilized in mycobacterium with a high concentration of isoniazid. Our work demonstrates that this approach of generating induced resistance could provide clinically relevant information after the -15C>T mutation, which is the common mutation found in clinical isolates. Moreover, other mutations detected in this work can also be found in clinical isolates. These findings may shed light on the impact of isoniazid in generating RAV and the resistance mechanism scenario that mycobacterium used under various isoniazid-pressuring conditions. More research is needed to understand better the role of RAV and mechanical resistance events within the mycobacterium genome in promoting a promising drug prediction platform that could lead to the right treatment for patients with MDR-TB and XDR-TB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364472 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1171861 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!