Polymer-based magnetic particles have been widely used for the separation of biological samples including nucleic acids, proteins, virus, and cells. Existing magnetic particles are almost prepared by coating polymers on magnetic nanoparticles (NPs). However, this strategy usually encounters the problem of poor magnetic NPs loading capacity. Here, a series of nanofractal magnetic particles (nanoFMPs) synthesized by a strategy of mediator monomer regulated emulsion interfacial polymerization is presented, which allows effective magnetic NPs loading and show efficient nucleic acid separation performance. The mediator monomers facilitate the dispersion of magnetic NPs in internal phase to achieve higher loading, and the hydrophilic monomers use electrostatic interactions to form surface nanofractal structures with functional groups. Compared with magnetic particles without nanofractal structure, nanoFMPs exhibit a higher nucleic acid extraction capability. This strategy offers an effective and versatile way for the synthesis of nanoFMPs toward efficient separation in various fields from clinical diagnosis to food safety and environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202300531 | DOI Listing |
Discov Nano
January 2025
Particle Engineering Centre, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
The increasing demand for magnetic iron oxide nanoparticles (IONPs) in biomedicine necessitates efficient and scalable production methods. Thermal decomposition offers excellent tailoring of the particle properties but its discontinuous batch-operation is restricting scale-up and industrial application. To overcome these challenges, several studies have demonstrated semi-continuous thermal decomposition by slowly injecting the precursor, though only half of them produce magnetite IONPs and even fewer use iron oleate precursors.
View Article and Find Full Text PDFSmall
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
Cells perceive external and internally generated forces of different kinds, significantly impacting their cellular biology. In the relatively nascent field of mechanobiology, the impact of such forces is studied and further utilized to broaden the knowledge of cellular developmental pathways, disease progression, tissue engineering, and developing novel regenerative strategies. However, extensive considerations of mechanotransduction pathways for biomedical applications are still broadly limited due to a lack of affordable technologies in terms of devices and simple magnetic actuatable materials.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
The present investigation seeks to customize the optical, magnetic, and structural characteristics of nickel oxide (NiO) nanopowders through chromium, iron, cobalt, copper, and zinc doping to enhance optoelectronic applications. In this regard, the preparation of pristine NiO and Ni × O (X = Cr, Fe, Co, Cu, and Zn) powders was successfully achieved through the co-precipitation method. The X-ray powder diffraction was employed to examine the prepared powders' phase formation and crystal structure characteristics.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
Particle manipulation is a central technique that enhances numerous scientific and medical applications by exploiting micro- and nanoscale control within fluidic environments. In this review, we systematically explore the multifaceted domain of particle manipulation under the influence of various X-force fields, integral to lab-on-a-chip technologies. We dissect the fundamental mechanisms of hydrodynamic, gravitational, optical, magnetic, electrical, and acoustic forces and detail their individual and synergistic applications.
View Article and Find Full Text PDFSci Rep
January 2025
Terahertz Research Section, Electronics and Telecommunications Research Institute, Deajeon, 34129, Republic of Korea.
The complex dynamics of terahertz (THz) wave scattering by subwavelength-scale structures remain largely unexplored. This article examines the spectral scattering characteristics of subwavelength-sized spherical particles probed by tightly focused THz waves through numerical simulations and experimental techniques. The simulations reveal that the scattering intensity for lower Mie resonance modes (magnetic dipole and electric dipole modes) remains largely unaffected when THz waves are focused down to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!