The facultative anaerobe Shewanella oneidensis respires an extensive set of electron acceptors and, as a consequence, can leak electrons to produce reactive oxygen species such as hydrogen peroxide (H2O2). However, the effects of respiration on cytoplasmic redox homeostasis are poorly characterized in comparison. In the present study, the H2O2 sensor HyPer-3 was deployed to interrogate cytoplasmic peroxide levels of both wild-type and gene deletion mutants lacking peroxide scavenging enzymes following exposure to H2O2. HyPer-3 signals were validated in the S. oneidensis wild-type strain and exhibited a dynamic range of 0-250 μM H2O2. As reported by the HyPer-3 sensor, the cytoplasm of H2O2-perturbed mutant strains lacking periplasmic glutathione peroxidase (PgpD) and double deletion mutants lacking catalase (KatB) and bifunctional catalase-peroxidases (KatG1 or KatG2) contained high H2O2 concentrations. The high cytoplasmic H2O2 concentrations correlated with impaired H2O2 removal rates displayed by the mutant strains. Results of the present study provide the first in vivo interrogation of the redox environment of the S. oneidensis cytoplasm with HyPer-3 sensors and indicate that proper redox conditions in minimal growth medium are maintained by the concerted action of both well-known (periplasmic PgpD, cytoplasmic KatB and KatG1) and previously overlooked (cytoplasmic KatG2) peroxidases and catalases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fnad075 | DOI Listing |
Toxicol In Vitro
December 2024
Department of Biochemistry, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea. Electronic address:
Particulate matter 2.5 (PM) exposure is responsible for skin inflammation, aging, and disruption of skin homeostasis. The objective of this investigation was to assess the potential of myricetin in protecting against skin damage caused by PM.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China.
Ferroptosis is a new type of cell death caused by redox imbalance mediated by iron-dependent lipid peroxidation, which is intimately linked to human disease. Circular RNA, characterized by covalently closed loop structure, has attracted much attention due to its involvement in various biological functions. However, little is known about the role of circRNA in ferroptosis.
View Article and Find Full Text PDFPlant Physiol
December 2024
Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
Soil salinization threatens global crop production. Here, we report that a receptor-like cytoplasmic kinase (RLCK), CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 3 (CRCK3), plays an essential role in plant salt tolerance via CATALASE 2 (CAT2), a hydrogen peroxide (H2O2)-scavenging enzyme in Arabidopsis (Arabidopsis thaliana). CRCK3 was induced by salt stress, and its knockout mutant displayed a salt-sensitive phenotype compared to wild-type (WT) plants.
View Article and Find Full Text PDFCurr Pharm Des
December 2024
Materials Laboratory, School of Mechanical Engineering, Yeungnam University, Gyeongsan-38541, Republic of Korea.
Hepatotoxicity is a critical health hazard, primarily contributing to the increased incidence of deaths globally. The liver is one of the major and extremely vital organs of the human body. Autoimmune diseases, viruses, exposure to toxicants such as carcinogens, and changes in eating habits can all cause liver problems, among other things.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein in the brain. Ferroptosis, a recently identified form of regulated cell death, is critical in PD pathogenesis due to its association with iron deposition, overproduction of reactive oxygen species, iron-dependent lipid peroxidation and impaired lipid peroxidation clearance. This cell death mechanism is closely linked to several pathogenic processes in PD, including α-synuclein aggregation, oxidative stress, mitochondrial dysfunction, microglia-induced neuroinflammation, and neuromelanin accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!