High-quality graphene obtained by chemical vapor deposition (CVD) technique holds significant importance in constructing innovative electronic and optoelectronic devices. Direct growth of graphene over target substrates readily eliminates cumbersome transfer processes, offering compatibility with practical application scenarios. Recent years have witnessed growing strategic endeavors in the preparation of transfer-free graphene with favorable quality. Nevertheless, timely review articles on this topic are still scarce. In this contribution, a systematic summary of recent advances in transfer-free synthesis of high-quality graphene on insulating substrates, with a focus on discussing synthetic strategies designed by elevating reaction temperature, confining gas flow, introducing growth promotor and regulating substrate surface is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202300865 | DOI Listing |
ACS Nano
December 2024
Nanophotonics Research Center, Institute of Microscale Optoelectronics and State Key Laboratory of Radio Frequency Heterogeneous, Shenzhen University, Shenzhen 518060, China.
Conventional microscopes, which rely on multiple objective lenses for varying magnifications, are bulky, complex, and costly, making them difficult to integrate into compact devices. They require frequent manual adjustments, complicating the imaging process and increasing maintenance burdens. This paper explores the potential of single ultrathin graphene metalens to address this issue.
View Article and Find Full Text PDFACS Sustain Chem Eng
December 2024
Department of Chemical Engineering, Faculty of Engineering and Design, University of Bath, Bath BA2 7AY, U.K.
High-performance and sustainable membranes for water desalination applications are crucial to address the growing global demand for clean water. Concurrently, electrospinning has emerged as a versatile manufacturing method for fabricating nanofibrous membranes for membrane distillation. However, widespread adoption of electrospinning for processing water-insoluble polymers, such as fluoropolymers, is hindered by the reliance on hazardous organic solvents during production.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
The growing commercialization of flexible electronic goods has led to increased interest in flexible wearable energy storage devices, particularly supercapacitors. The development of supercapacitive electrodes from low-cost, sustainable, and renewable materials is essential for promoting a green and eco-friendly approach. Cellulose nanocrystals (CNCs) with unique properties and structures hold the potential to produce a 3-D network-based electrode, which is necessary to utilize high-quality carbon materials.
View Article and Find Full Text PDFNanophotonics
September 2024
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
Silicon photonics with the advantages of low power consumption and low fabrication cost is a crucial technology for facilitating high-capacity optical communications and interconnects. The graphene photodetectors (GPDs) featuring broadband operation, high speed, and low integration cost can be good additions to the SiGe photodetectors, supporting high-speed photodetection in wavelength bands beyond 1.6 μm on silicon.
View Article and Find Full Text PDFACS Nano
December 2024
State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
Ultraflexible neural electrodes have shown superior stability compared with rigid electrodes in long-term recordings, owing to their low mechanical mismatch with brain tissue. It is desirable to detect neurotransmitters as well as electrophysiological signals for months in brain science. This work proposes a stable electronic interface that can simultaneously detect neural electrical activity and dopamine concentration deep in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!