Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we aimed to fabricate an enhanced antibacterial agent to act against pathogenic bacteria in aqueous environments. To achieve this, silver nanoparticles (AgNPs) were inlaid on a kappa-carrageenan (KC) base and coated on FeO magnetic cores (FeO@KC@Ag). Superparamagnetic FeO nanoparticles were designed at the center of the composite nanostructure, allowing magnetic recovery from aqueous media in the presence of a magnet. The synthesized nanoconjugate was characterized in each step using XRD, FT-IR, EDX, FE-SEM, TEM, DLS, VSM, and disk-diffusion antibacterial method. Results show that the nanocomposite system is formed, while the magnetic properties remain practically stable. The agglomeration of the AgNPs was decreased by the trap-like function of KC coating, which resulted in an improved antibacterial activity for the FeO@KC@Ag formulation. These findings suggest that FeO@KC@Ag nanocomposites could be promising agents for combating bacterial infections in aqueous environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-28804-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!