Association of Novelty-Related Locus Coeruleus Function With Entorhinal Tau Deposition and Memory Decline in Preclinical Alzheimer Disease.

Neurology

From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.

Published: September 2023

Background And Objectives: The predictable Braak staging scheme suggests that cortical tau progression may be related to synaptically connected neurons. Animal and human neuroimaging studies demonstrated that changes in neuronal activity contribute to tau spreading. Whether similar mechanisms explain tau progression from the locus coeruleus (LC), a tiny noradrenergic brainstem nucleus involved in novelty, learning, and memory and among the earliest regions to accumulate tau, has not yet been established. We aimed to investigate whether novelty-related LC activity was associated with the accumulation of cortical tau and its implications for cognitive decline.

Methods: We combined functional MRI data of a novel vs repeated face-name learning paradigm, [F]-FTP-PET, [C]-PiB-PET, and longitudinal cognitive data from 92 well-characterized older individuals in the Harvard Aging Brain Study. We related novelty vs repetition LC activity to cortical tau deposition and to longitudinal decline in memory, executive function, and the Preclinical Alzheimer Disease Cognitive Composite (version 5; PACC5). Structural equation modeling was used to examine whether entorhinal cortical (EC) tau mediated the relationship between LC activity and cognitive decline and whether this depended on beta-amyloid deposition.

Results: The participants' average age at baseline was 69.67 ± 10.14 years. Fifty-one participants were female. Ninety-one participants were cognitively normal (CDR global = 0), and one participant had mild cognitive impairment (CDR global = 0.5) at baseline. Lower novelty-related LC activity was specifically related to greater tau deposition in the medial-lateral temporal cortex and steeper memory decline. LC activity during novelty vs repetition was not related to executive dysfunction or decline on the PACC5. The relationship between LC activity and memory decline was partially mediated by EC tau, particularly in individuals with elevated beta-amyloid deposition.

Discussion: Our results suggested that lower novelty-related LC activity is associated with the emergence of EC tau and that the downstream effects of this LC-EC pathway on memory decline also require the presence of elevated beta-amyloid. Longitudinal studies are required to investigate whether optimal LC activity has the potential to delay tau spread and memory decline, which may have implications for designing targeted interventions promoting resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516269PMC
http://dx.doi.org/10.1212/WNL.0000000000207646DOI Listing

Publication Analysis

Top Keywords

memory decline
20
cortical tau
16
tau
12
tau deposition
12
novelty-related activity
12
activity
9
locus coeruleus
8
decline
8
preclinical alzheimer
8
alzheimer disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!