ER membrane curvature and ubiquitin as drivers of ER-phagy.

Dev Cell

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Published: July 2023

In a recent issue of Nature, González et al. and Foronda et al. examine the role of ubiquitin in autophagic capture of ER by ER-phagy. They propose that ubiquitylation of ER-phagy receptor FAM134B and ER-shaping protein ARL61PL1 promotes receptor clustering in nanodomains, which generates membrane curvature, facilitating autophagosomal capture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2023.06.008DOI Listing

Publication Analysis

Top Keywords

membrane curvature
8
curvature ubiquitin
4
ubiquitin drivers
4
drivers er-phagy
4
er-phagy issue
4
issue nature
4
nature gonzález
4
gonzález et al
4
et al foronda
4
foronda et al
4

Similar Publications

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

On the Gaussian modulus of lipid membranes.

Biomech Model Mechanobiol

January 2025

Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX, 77204, USA.

The Gaussian modulus is a crucial property that influences topological transformations in lipid membranes. However, unlike the bending modulus, estimating the Gaussian modulus has been particularly challenging due to the constraints imposed by the Gauss-Bonnet theorem. Despite this, various theoretical, computational, and experimental approaches have been developed to estimate the Gaussian modulus, though they are often complex, and analytical estimates remain rare.

View Article and Find Full Text PDF

The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths.

View Article and Find Full Text PDF

Spatiotemporal pattern formation of membranes induced by surface molecular binding/unbinding.

Soft Matter

January 2025

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.

Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.

View Article and Find Full Text PDF

Hydrogen evolution reaction (HER), as one of the most advanced methods for the green production of hydrogen, is greatly impeded by inefficient mass transfer. Here we present an efficiently reactant enriched and mass traffic system by integrating high-curvature Pt nanocones with 3D porous TiAl framework to enhance mass transfer rate. Theoretical simulations, in situ Raman spectroscopy and potential-dependent Fourier transform infrared spectroscopy results disclose that the strong local electric field induced by high-curvature Pt can greatly promote the HO supply rate during HER, resulting in ∼1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!