Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arbuscular mycorrhizal (AM) fungi could mitigate individual drought and heat stress in host plants. However, there are still major gaps in our understanding of AM symbiosis response to the combined stresses. Here, we compared seven AM fungi, Rhizophagus irregularis, Funneliformis mosseae, Funneliformis geosporum, Funneliformis verruculosum, Funneliformis coronatum, Septoglomus deserticola, Septoglomus constrictum, distributed to many world regions in terms of their impacts on tomato endurance to combined drought and chronic heat as well as combined drought and heat shock. A multidisciplinary approach including morphometric, ecophysiological, biochemical, targeted metabolic (by ultrahigh-performance LC-MS), and molecular analyses was applied. The variation among AM fungi isolates in the enhancement in leaf water potential, stomatal conductance, photosynthetic activity, and maximal PSII photochemical efficiency, proline accumulation, antioxidant enzymes (POD, SOD, CAT), and lowered ROS markers (HO, MDA) in host plants under combined stresses were observed. S. constrictum inoculation could better enhanced the host plant physiology and biochemical parameters, while F. geosporum colonization less positively influenced the host plants than other treatments under both combined stresses. F. mosseae- and S. constrictum-associated plants showed the common AM-induced modifications and AM species-specific alterations in phytohormones (ABA, SA, JA, IAA), aquaporin (SlSIP1-2; SlTIP2-3; SlNIP2-1; SlPIP2-1) and abiotic stress-responsive genes (SlAREB1, SlLEA, SlHSP70, SlHSP90) in host plants under combined stresses. Altogether, mycorrhizal mitigation of the negative impacts of drought + prolonged heat and drought + acute heat, with the variation among different AM fungi isolates, depending on the specific combined stress and stress duration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.107892 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!