Continuous progress has been made in elucidating the relationship between material property, device design, and body function to develop surgical meshes. However, an unmet need still exists wherein the surgical mesh can handle the body motion and thereby promote the repair process. Here, the hernia mesh design and the advanced polymer properties are tailored to synchronize with the anisotropic abdominal motion through shape configuration. The thermomechanical property of shape configurable polymer enables molding of mesh shape to fit onto the abdominal structure upon temperature shift, followed by shape fixing with the release of the heat energy. The microstructural design of mesh is produced through finite element modeling to handle the abdominal motion efficiently through the anisotropic longitudinal and transverse directions. The design effects are validated through in vitro, ex vivo, and in vivo mechanical analyses using a self-configurable, body motion responsive (BMR) mesh. The regenerative function of BMR mesh leads to effective repair in a rat hernioplasty model by effectively handling the anisotropic abdomen motion. Subsequently, the device-tissue integration is promoted by promoting healthy collagen synthesis with fibroblast-to-myofibroblast differentiation. This study suggests a potential solution to promote hernia repair by fine-tuning the relationship between material property and mesh design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202303325 | DOI Listing |
Sci Rep
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
The current gold standard for the study of human movement is the marker-based motion capture system that offers high precision but constrained by costs and controlled environments. Markerless pose estimation systems emerge as ecological alternatives, allowing unobtrusive data acquisition in natural settings. This study compares the performance of two popular markerless systems, OpenPose (OP) and DeepLabCut (DLC), in assessing locomotion.
View Article and Find Full Text PDFGravity has long been purported to serve a unique role in sensorimotor coordination, but the specific mechanisms underlying gravity-based visuomotor realignment remain elusive. In this study, astronauts (9 males, 2 females) performed targeted hand movements with eyes open or closed, both on the ground and in weightlessness. Measurements revealed systematic drift in hand-path orientation seen only when eyes were closed and only in very specific conditions with respect to gravity.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2025
Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois, USA.
Background: Various methods exist to correct for intrafraction motion (IFM) of the prostate during radiotherapy. We sought to characterize setup corrections in our practice informed by the TrueBeam Advanced imaging package, and analyze factors associated with IFM.
Methods: 132 men received radiation therapy for prostate cancer with a volumetric modulated arc therapy technique.
Invest Radiol
January 2025
From the Department of Radiology, Stanford University, Stanford, CA (K.W., M.J.M., A.M.L., A.B.S., A.J.H., D.B.E., R.L.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (K.W.); GE HealthCare, Houston, TX (X.W.); GE HealthCare, Boston, MA (A.G.); and GE HealthCare, Menlo Park, CA (P.L.).
Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal.
View Article and Find Full Text PDFJSES Int
November 2024
Queensland Unit for Advanced Shoulder Research (QUASR), Queensland University of Technology, Brisbane, Australia.
Background: Frozen shoulder (FS) is a debilitating inflammatory condition affecting the shoulder capsule that causes significant pain and stiffness. Its etiology, pathophysiology, and treatment remain poorly understood. Although regarded as self-limiting, FS can have profound implications on the activities of daily living and usually takes 1-4 years to resolve on its own accord.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!