Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The visual feature pyramid has shown its superiority in both effectiveness and efficiency in a variety of applications. However, current methods overly focus on inter-layer feature interactions while disregarding the importance of intra-layer feature regulation. Despite some attempts to learn a compact intra-layer feature representation with the use of attention mechanisms or vision transformers, they overlook the crucial corner regions that are essential for dense prediction tasks. To address this problem, we propose a Centralized Feature Pyramid (CFP) network for object detection, which is based on a globally explicit centralized feature regulation. Specifically, we first propose a spatial explicit visual center scheme, where a lightweight MLP is used to capture the globally long-range dependencies, and a parallel learnable visual center mechanism is used to capture the local corner regions of the input images. Based on this, we then propose a globally centralized regulation for the commonly-used feature pyramid in a top-down fashion, where the explicit visual center information obtained from the deepest intra-layer feature is used to regulate frontal shallow features. Compared to the existing feature pyramids, CFP not only has the ability to capture the global long-range dependencies but also efficiently obtain an all-round yet discriminative feature representation. Experimental results on the challenging MS-COCO validate that our proposed CFP can achieve consistent performance gains on the state-of-the-art YOLOv5 and YOLOX object detection baselines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2023.3297408 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!