Although non-alkaline rechargeable Zn-air batteries (RZABs) are promising for energy storage, their chemistry is still underdeveloped and unclear. It was suggested that using Zn(OAc) or Zn(OTf) aqueous solutions as electrolytes enables reversible, corrosion-free charge-discharge processes, but the anodic stability of carbon in these cells has remained poorly studied. We report that CO evolution is manifested during the oxygen evolution reaction in non-alkaline RZABs, which is associated with the corrosion of carbon scaffolds. This corrosion is observed for different electrolyte compositions, such as Zn(OAc), ZnSO and Zn(OTf) solutions of various concentrations. The corrosion rate decreases when the overpotentials during the oxygen evolution reaction are lower. This study underlines the importance of addressing the anodic instability of carbon in non-alkaline RZABs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cc02458j | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, P.R. China.
Electrochemical CO capture driven by renewable electricity holds significant potential for efficient decarbonization. However, the widespread adoption of this approach is currently limited by issues such as instability, discontinuity, high energy demand, and challenges in scaling up. In this study, we propose a scalable strategy that addresses these limitations by transforming the conventional single-step electrochemical redox reaction into a stepwise electrochemical-chemical redox process.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
Increasing electrode thickness is a key strategy to boost energy density in lithium-ion batteries (LIBs), which is essential for electric vehicles and energy storage applications. However, thick electrodes face significant challenges, including poor ion transport, long diffusion paths, and mechanical instability, all of which degrade battery performance. To overcome these barriers, a novel micro-electric-field (μ-EF) process is introduced that enhances particle alignment during fabrication with reduced distance between anode and cathode.
View Article and Find Full Text PDFSmall
December 2024
LiB Materials Research Group, Research Institute of Industrial Technology and Science (RIST), POSCO Global R and D Center, Sondohwahak-ro 100, Yeonsu-gu, Incheon, 21985, Republic of Korea.
The demand for all-solid-state batteries (ASSBs) featuring credible LiPSCl argyrodite (LPSCl) electrolytes is increasing, driving interest in exploring suitable current collectors for ASSBs. Copper (Cu), used as a current collector in traditional lithium-ion batteries, exhibits significant instability in LPSCl-ASSBs. In this study, the effectiveness of iron (Fe) is systematically investigated as an alternative current collector in LPSCl-ASSBs and compare its performance to that of Cu.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
Vanadium-based compounds exhibit a high theoretical capacity to be used as anode materials in sodium-ion batteries, but the volume change in the active ions during the process of release leads to structural instability during the cycle. The structure of carbon nanofibers is stable, while it is difficult to deform. At the same time, the huge specific surface area energy of quantum dot materials can speed up the electrochemical reaction rate.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
Aqueous Zn-ion batteries (AZIBs) are widely acknowledged as viable future energy storage solutions, particularly for low-cost stationary applications. However, the interfacial instability of zinc anodes represents a major challenge to the commercial potential of Zn-ion systems, promoting an array of side reactions including spontaneous corrosion, hydrogen evolution, and dendrite growth that destabilize cell performance, lower Coulombic efficiency and ultimately lead to early cell failure. While other commercially relevant battery systems benefit from a spontaneously forming solid electrolyte interphase, no such layer forms in AZIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!