Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using first-principles calculations and LaTe as an example of an n-type gapped metal, we demonstrate that gapped metals can develop spontaneous defect formation resulting in off-stoichiometric compounds. Importantly, these compounds have different free carrier concentrations and can be realized by optimizing the synthesis conditions. The ability to tune the free carrier concentration allows the tailoring of the intraband and interband transitions, thus controlling the optoelectronic properties of materials in general. Specifically, by realizing different off-stoichiometric LaTe compounds, it is possible to reach specific crossings of the real part of the dielectric function with the zero line, reduce the plasma frequency contribution to the absorption spectra, or, more generally, induce metal-to-insulator transition. This is particularly important in the context of optoelectronic, plasmonic, and epsilon-near-zero materials, as it enables materials design with a target functionality. While this work is limited to the specific gapped metal, we demonstrate that the fundamental physics is transferable to other gapped metals and can be generally used to design a wide class of new optoelectronic/plasmonic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp01100c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!